
AD-Ai42 4i8 PERFORMANCE MEASUREMENT IN A DISTRIBUTED PROCESSING i/2
ENVIRONMENT(U) AIR FORCE INST OF TECH WRIGHT-PRTTERSON
AFB OH W E AYEN 1984 AFIT/CI/NR-84-i@D

UNCLASSIFIED /012/I NL

EEEEEEEEEEEEEE
EEEEEEEEEEEEEE
EIIEEIIEEEEEEE
mEllEEEEEEEEEE

EEEEEEEIIIEEEE
EEEEEEEEIIIIEE

o - - . 6 W5 .- -b-. .,

12 11. 4 11.6

MICROCOPY RESOLUTIN TEST CHART

N&TIONAL WrSAAU OP STAIIOADS -,963 -A

SECURITY CLASSIFICATION OFTI/AE(he aenee)

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
REPOT DCUMN~kTON AGEBEFORE COMPLETING FORM

I.~~~~ ~ ~ ~ REOTNME Z4 y Sq)b CIPIENT'S CATALOG NUMBER

4L TILE (ad Subitle)S. TYPE OF REPORT & PERIOD COVfERE0OPerformance Measurement in a Distributed T~SV'DSETTO

6. PERFORMING 01G. REPORT NUMBER

1. AUTIHOR(q) 8. CONTRACT OR GRANT NUMBER(s)

William Eugene Ayen

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

AFIT STUDENT AT: The Ohio State University

11. CONTROLL.ING OFFICE NAME AND ADDRESS 12. REPORT DATE

* /NR 1984
0) B OH 45433 13. NUMBER OF PAGES

____ ___ ____ ___ ____ ___ ____ ___ ____ ___106q O. NITORIN G AGENCY NAME &ADDRESS(II different from Controling Office) 1S. SECURITY CLASS. (of this report)

U NC LASS
15a, DECLASSIFICATION, DOWNGRADING

SCHEDULE

STRIBUTION STATEMENT (of this Report) LjDI1 &%0
ZOVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED ELECTE

JUN 2 684.

STRIBUTION STATEMENT (of the abstract entered In Block 20. if different from Report)

I8. SUPPLEMENTARY NOTES /fAr
APPROVED FOR PUBLIC RELEASE: IAW AFR19N OAE

190/iDean fr Research and
Professional Developmen

AFIT. Wright-Patterson AFB OH
* 1 19. KEY WORDS (Continue on reverse side it necessary and identify by block number)

IA 20. ABSTRACT (Continue on reverse side If necessary end identify by block number)

ATTACHED
LLJ

DD 1JAN73 1473 EDITION OF INOV 1S5IS OBSOLETE UNCLASS

8 4 -0 5 2 1 1a 3RIT Y CLASSIFICATION OF THIS PAGE ^o~tn Data Entered)

|p..

CHAPTER 1

INTRODUCTION

1.1 ABSTRACT

* A large class of distributed computing environments is

emerging. These systems have a common set of distinguishing

characteristics which separate them from single processor

systems and many other distributed environments, and which

must be considered when a measurement facility is designed

for the new environments. The fundamental measurement ques-

tions of what to measure and how to measure are both impact-

ed by the distribution, and these impacts occur in a number

of ways and at various locations in the distributed systems.

This dissertation describes the characteristics of a partic-

ular class of distributed computing environments and estab-

lishes the impact that the characteristics have on the

design of a measurement facility for that class. The design

of the measurement facility for a specific system in the

class is presented.

N

-- °

e- AFIT/CI/NR 84-10D
IV - AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to ascertain the value and/or contribution of research
accomplished by students or faculty of the Air Force Institute of Technology (ATC). It would be
greatly appreciated if you would complete the following questionnaire and return it to:

AFIT/NR
Wright-Patterson AFB OH 45433

RESEARCH TITLE: Performance Measurement in a Distributed Processing Environment

AUTHOR: William Eugene AyAn

RESEARCH ASSESSMENT QUESTIONS:

1. Did this research contribute to a current Air Force project?

() a. YES () b. NO

2. Do you believe this research topic is significant enough that it would have been researched

(or contracted) by your organization or another agency if AFIT had not?

() a. YES () b. NO

3. The benefits of AFIT research can often be expressed by the equivalent value that your
agency achieved/received by virtue of AFIT performing the research. Can you estimate what this
research would have cost if it had been accomplished under contract or if it had been done in-house
in terms of manpower and/or dollars?

() a. MAN-YEARS () b. $

4. Often it is not possible to attach equivalent dollar values to research, although the
results of the research may, in fact, be important. Whether or not you were able to establish an
equivalent value for this research (3. above), what is your estimate of its significance?

() a. HIGHLY () b. SIGNIFICANT () c. SLIGHTLY () d. OF NO
SIGNIFICANT SIGNIFICANT SIGNIFICANCE

5. AFIT welcomes any further comments you may have on the above questions, or any additional
details concerning the current application, future potential, or other value of this research.
Please use the bottom part of this questionnaire for your statement(s).

NAME GRADE POSITION

ORGANIZATION LOCATION

STATEMENT(s):

.

FOLD DO,1N ON OUTSIDE - SEAL WITH TAPE

.1~, I

I

AFIl/NR NO*** POSTAGE
11111-IMTEMUl ON Aa NECESSARY

IF MAILED
OFIAL. ous IN THE

PCIALY FMg PUIVATE Va. Ss UNITED STATES

I BUSIN REPLYM I _ _

FIR M PUMiT 1. "U WANINiON D.C.

POIRAGE WILL N PAID BY AlICE55 61,
.,

AFTTI DAA

Wriot-Pattersn AFB OH 45433_ _

FL I

"1

FOLD IN S,

'No

Performance Measurement in a

Distributed Processing Environment

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the Graduate

School of The Ohio State University

By

William Eugene Ayen, B.S., M.S.

The Ohio State University

1984

Reading Committee: Approved By

Dr. Sandra A. Mamrak,

Dr. Bruce W. Weide Advisor

Dr. Dennis W. Leinbaugh Department of Computer
and Information Science

% DEDICATION

I dedicate this dissertation to my family, Darcy, Mark, Kir-

sten, and Scott, for their never ending and unselfish sup-

port.

D1'

LDist ;-p~e:/C odes

ACKNOWLEDGEMENTS

Without the support of my family and so many friends this

work would not have been possible. My family has always

been completely supportive of my efforts, understanding when

they had no husband or father, and there when I needed them.

My parents, Marion and Orville, gave me a tremendous start

on life and have always been a source of inspiration. Many

have provided special assistance - Dr. Ralph Curtis who

started me on this path, Colonel Edmund Milauckas who helped

me in my career, and Colonels John Wittry and Joseph Monroe

who made this possible. A special thanks to Sandy Mamrak

for the tremendous support and assistance she has given me

"4 over the last five years. Without her dedication and support

• ,I could not have succeeded. I also want to acknowledge the
,3

4" fine assistance provided by Bruce Weide and Dennis Leinbaugh

in this effort. Most importantly, I want to thank God for

*44 always being present and giving me the strength to continue

on.

• ii

. ...4i .?; .:?. .2 ¢: .<;; ? :'

'.'"

*1 VITA

March 21, 1945 Born - Monroe, Wisconsin

1967 B.S., University of Wisconsin -

Platteville, Platteville, Wisconsin

1968-1971 Meteorologist, United States Air Force

1971-1972 Graduate student, University of
Missouri-Rolla, Rolla, Missouri

1972 M.S., University of Missouri - Rolla

1973-1977 Computer Performance Analyst,
United States Air Force

1977-1979 Instructor, U. S. Air Force Academy

1979-1981 Graduate student, The Ohio State
University, Columbus, Ohio

1982-1984 Assistant Professor, United States
Air Force Academy

PUBLICATIONS

"Performance Measurement and Exception Handling in
Desperanto's Distributed Environment.", Proceedings 3rd
International Conference on Distributed Computer Systems,
October 1982, pp. 847-853. With S. A. Mamrak, F. Gherfal,
and D. Leinbaugh.

"A New Environment for Teaching Introductory Computer Sci-
ence.", Proceedings 14th SIGCSE Technical Symosium on Com-
puter Science Education, Febay 1983,-pp. 258-264. With
Sam Grier.

FIELDS OF STUDY

Major Field: Computer performance evaluation
Minor Field: Computer networks

iv
I
.1

.4

.4

.4, , - "- ".'W' , < e< .," " .*, : * .' 'ii *// .•" ." ,

TABLE OF CONTENTS

Page

DEDICATION .. ii

ACKNOWLEDGEMENTS iii

VITA .. iv

LIST OF FIGURES vii

Chapter

1.0 INTRODUCTION
1.1 Abstract I
1.2 Motivation for Research 2
1.3 Research Contributions and

Organization of Dissertation 4

2.0 A CLASS OF DISTRIBUTED ENVIRONMENTS
2.1 Introduction 7
2.2 Distinguishing Characteristics

of the NAHCS Class 9
2.2.1 Existing Sites 11
2.2.2 System Coordination/Control 12
2.2.3 Interprocess Communication 13
2.2.4 Memory Address Space 16
2.2.5 Programmers-in-the-Large and End-Users 17
2.3 Summary 20

3.0 MEASUREMENT FACILITY REQUIREMENTS

3.1 Introduction 22
3.2 Measurement Service Support 24
3.2.1 Service Providers 25
3.2.2 Service Requirers 29
3.2.3 Summary 30
3.3 Measurement Requirements for NAHCS Class 32
3.3.1 Distributed System Analysts 35
3.3.2 PITL .. 36
3.3.3 End-User 40
3.4 Summary 42

4.

.

'KI , ,2L ,2 ,. -" - %. , "" . t.% """"" . " , . ","% '" , ' " -. . . .- ".- ' ' .

"4.0 MEASUREMENT FACILITY DESIGN
4.1 Introduction 43

4.2 Measurement Facility Design Approach 44..4
4.2.1 General Measurement Facility Model 45
4.2.2 Use of Existing Measurement Facilities 47

4 4.3 NACS Measurement Facility Design 53
4.3.1 Analysis .. 54
4.3.2 Measurement 55
4.3.3 Instrumentation 58
4.3.4 Control 59
4.4 Conclusion 60

5.0 MEASUREMENT FACILITY IMPLEMENTATION
5.1 Introduction 61
5.2 Desperanto Software Support System 62..6
5.2.1 Example Desperanto Interaction 65
5.3 Desperanto Measurement Facility Design 69
5.3.1 Measurement Facility Operation 69
5.3.2 Measurement Server 74
5.3.3 Control 80
5.3.4 Analysis 81
5.4 Measurement Primitives 82
5.5 Summary 86

6.0 CONCLUSIONS AND FURTHER WORK
6.1 Introduction 87
6.2 Research Contributions 89
6.3 Further Work 92

APPENDIXES

A. Measurement Primitives 93

B. Desperanto Measurement Facility 100

BIBLIOGRAPHY .. 106

9e

vi

10AZI

LIST OF FIGURES

Figure Page

2.1 Comparison of System Characteristics 21

3.1 Divison of Computer Usage 25
3.2 Functional Division of Service Providing Activity 26

3.3 Further Division of Service Providing Activity .. 29

3.4 Measurement Service Support for NAHCS Systems ... 31

4.1 Measurement Facility Model.......................46

4.2 Comparison of Measurement Facilities 52

4.3 Example of Resource Interaction 57

5.1 Desperanto System Model 63

5.2 Desperanto Interaction Example 66

5.3 Command Options and Formats for

End-User Measurements 71

5.4 Command Options and Formats for

PITL Measurements 73

5.5 Measurement Server for End-User 76
4.

5.6 Measurement Server for PITL 78

5.7 Measurement Primitives 85

vii

i ' "S "

,..{

CHAPTER 1

INTRODUCTION

1.1 ABSTRACT

A large class of distributed computing environments is

emerging. These systems have a common set of distinguishing

characteristics which separate them from single processor

systems and many other distributed environments, and which

must be considered when a measurement facility is designed

for the new environments. The fundamental measurement ques-

tions of what to measure and how to measure are both impact-

ed by the distribution, and these impacts occur in a number

of ways and at various locations in the distributed systems.

This dissertation describes the characteristics of a partic-

ular class of distributed computing environments and estab-

lishes the impact that the characteristics have on the

design of a measurement facility for that class. The design

of the measurement facility for a specific system in the

class is presented.

4I

". -.- - -' • = " ' . " v . "". . .,' .""= -.''.-.- '- ' . '- '. -' .-.- ' .-. ..". " -" -." ".% " .""1

2

1.2 MOTIVATION FOR RESEARCH

Computing environments formed by linking together ex-

isting computer sites by means of a communication subnetwork

are currently an important class of computing environments.

In these environments resources existing at an individual

site can be made available to users at other sites. Howev-
'.-°°.

er, the level of resource sharing possible has been very

limited [FOR78]. The computers involved are frequently of

heterogeneous architectures and under managerial control of

multiple organizations. These existing systems provide a

wide range of existing software which is readily available

only to users on the local systems. The communication sub-

network hardware is readily available and can be implemented

with little difficulty. The software required to facilitate

the sharing of resources across existing local systems, how-

ever, is much more difficult to design and implement. The

software has been both difficult to write and hard to use

and thus is not readily available. The difficulty arises

because the software must interface existing operating sys-

tem architectures that were initially developed under many

different assumptions and in diverse environments.

"'-'*.

_). -.

.1-%

"77 7- -7-7 71

3

Presently work is in progress at The Ohio State Univer-

sity to design a software support system for such distribut-

ed computing environments [MAM82a, MAM82b, MAM82c]. That

design effort is focused on several issues of concern to

designers. Among the issues being addressed are the design

of the virtual interface for process intercommunication,

naming, exception handling, and data conversion for

resources included in the system, and the development of

distributed applications that make direct use of the distri-

buted environment IMAM83].

A very important issue that should be considered in the

design of any system is the need to provide performance

data. When this issue is included in the initial design of

the system to be measured a number of benefits, such as

availability of performance data throughout the system life

cycle and more efficient implementation of the measurement

capability, are possible. As a result, the design of a

measurement facility and the issues pertaining to that

design were investigated.

.°4.

,.,

4'ila

,!

.4* , 4 .

- ~ .*.* **., *'~* ***- .,*

4

1.3 RESEARCH CONTRIBUTIONS AND ORGANIZATION OF DISSERTATION

The research for this dissertation resulted in several

significant contributions related to the design and imple-

mentation of measurement facilities for systems in a class

of distributed environments. The contributions are summar-

ized in the following paragraphs which also provide an out-

line of the dissertation.

The class of distributed computing environments is de-

fined in Chapter 2. This chapter establishes five distin-

guishing characteristics that separate systems in this class

from other systems. These five characteristics,

-autonomous and heterogeneous computer sites

-lack of system wide coordination and control

-message passing used for interprocess communication

-disjoint memory address spaces

-distinct programmers-in-the-large and end users

define the class which provides a framework for the

remainder of the research.

S.b

-%.

I. " :. -"" "-". ". . ;.-" ."-""''' ; ' ' '. . ,, < . %,''",, , ".., ' , " .- ' ,",.'.'

5

Given the definition of the environment, the next

chapter establishes "what" to measure. The research identi-

fies three measurement users - distributed systems analysts,

programmers-in-the-large, and end-users. A major contribu-

tion of the research is the identification for the first

time of the programmer-in-the-large as a measurement user.

The research also establishes that the programmers-in-the-

large and end-users have unique measurement requirements.

These requirements, including the measurement parameters of

interest, are described in Chapter 3.

The next chapter establishes "how" to accomplish the

requirements identified in Chapter 3 given the environment

defined in Chapter 2. A general model for measurement fa-

cilities is defined with four primary functions included in

it: analysis, measurement, instrumentation, and control. A

major contribution of this research is the identification of

the interactions among these functions and how to design

measurement facilities based on these interactions. The

design approach is applied to systems under the constraints

identified to yield for the first time the design of meas-

urement facilities for this class of systems. The research

establishes that existing measurement facilities cannot be

used to satisfy the requirements outlined in Chapter 3.

"4"

• * , , .." , , ' ,, " S". - . '-, S, *S " .5 -.' " ", ". ., ' .- "." - .- .5 55,,.'' •.' '-

-* ..-..-. o --.- - - - °
.. • . . .

L°

6

The final major chapter, Chapter 5, specifies the meas-

urement facility for an example system in the NAHCS class,

Desperanto. The resulting design is simple. The facility

utilizes servers to perform the measurement functions. Dur-

ing the definition of the servers a number of measurement

primitives are identified. The identification of these

primitives is a significant contribution since they can be

used to implement measurement facilities in other systems in

the class.

Further detailed specifications for the primitives and

the measurement servers are given in the Appendices.

-.°

.

? 4.

4.

4.

".4

" " "" ' ':'. " " "'- '"- '""',";" -'"''"'"""""-" """ " '""""' "" ' ."." "'.-" ","..'.- -""." ' -

CHAPTER 2

A CLASS OF DISTRIBUTED ENVIRONMENTS

2.1 INTRODUCTION

Computer systems are comprised of processing, main

storage, input/output, and auxiliary storage units. Early

third generation computer systems contained a single proces-

sor, a large amount of core memory, and numerous peripheral

devices with a single operating system managing the overall

operation of the system. Multiprogramming allowed for

parallel operations with the overlap of CPU and input/output

'(I/O) operations.

a3 The development of mini- and later micro-computer sys-

tems resulted in a great increase in the availability of

processors. Technology advances and increased processing

requirements resulted in the development of computer systems..

with multiple processors sharing logical and sometimes phy-

sical resources. These systems have been labeled "distri-

buted" meaning that not all of the processing functions are

performed by a single processLng element [BO081]. Many dif-

ferent architectures have resulted [WEI80] as well as many

7

• qr ' ''~~~~~~~~~~~~~~~. ".... -".. '..''. ",'.. '... i.. '.... " ' ' - ' '' "

8

different definitions of what constitutes a distributed sys-

tem [ENS78, TR178].

A wide range of distributed system architectures can be

defined. The specific architecture chosen for a system is

greatly influenced by the environment in which the system is

developed. This chapter introduces one class of distributed

environments, those consisting of existing, autonomous and

heterogeneous computer sites connected by a communication

subnetwork. This Network of Autonomous and Heterogeneous

Computer Sites (NAHCS) class of distributed processing sys-

tems provides a large number of potential benefits that have

not existed in previous distributed systems [FOR78, MAM82b].

This chapter defines the distributed environment that
contains systems in the NAHCS class. The class is dis-

tinguished by five specific characteristics that make it a

unique class of systems:

a. existing sites are autonomous and heterogeneous

b. system wide coordination and control does not exist

c. interprocess communication is via message passing

d. memory address spaces are disjoint

e. programmers-in-the-large and end-users are distinct.

Each of these characteristics is discussed and example sys-

tems not contained in the class are specified.

S.

... ~ ~. ,-........ .-. 4.-,.. --. ,. %%%.' ,,%%.,%'9,',: . ,. .. _.-.. - , ,.c , , . , • , , . . .

9

2.2 DISTINGUISHING CHARACTERISTICS OF THE NAHCS CLASS

A large number of computing environments formed by

linking together existing computer systems with a communica-

tion subnetwork exists. The difficulties encountered when

interfacing existing operating system architectures designed

under the normal assumptions of shared memory and global

system state information has restricted the capabiliLies and

structure of the existing interconnected systems. The

software required to accomplish the interfacing is extremely

difficult to write and not well understood [MAM83]. The

distributed environments described below would allow for the

sharing of existing resources while also facilitating the

development of new, distributed services.

The design of the distributed systems in this class is

based on the concept of guest layering. The motivation for

the use of guest layering, the building of a uniform inter-

face to existing local architectures, is that this approach

provides for incorporation of existing resources into the

distributed system without a need to modify these resources

IMAM83J. Standard interfaces, defined for each system ar-

chitecture, eliminate the need to define interfaces for each

combination of architectures and eliminate the need to modi-

fy the existing system software.

4 .. ,'; 'I . , .,: " ,/ . .," ' "."-. ' -"""- -: " ." - -" " ' " "" ' ."". -"" "-""

10

The guest layer approach allows the users to selective-

ly request use of the shared resources in the distributed

system. The command language and the access mechanisms for

the user are the same regardless of the location of the

resource. Other approaches require the user to know the ac-

cess mechanisms for both the network and the operating sys-

tem of the host system where the resource resides.

The resources on the various systems do not have to be

modified in order to be compatible with each other. Thus the

software can be programmed to take advantage of local

operating system services and achieve performance benefits.

Current application and system software can be used without

modification including the interfaces to the resources. The

performance of the strictly local resources is not degraded

-.~ since they are in no way changed by the guest layering.

The following sections define the NAHCS class by ex-

'plaining the five distinguishing characteristics that make

this a unique class. These characteristics distinguish sys-

tems in the class from those not in the class and impact on

the design of the measurement facility for the class. Many

systems have some of these characteristics, but no opera-

tional system meets all of the criteria for membership in

the class.

; - - i - .- 7 . , , _- : :f], .,o- . - _ . . - . - * . ; . ..

.IN.

11

2.2.1 Existing Sites

The NAHCS class contains systems formed by linking to-

gether existing single computer sites by means of a communi-

cation subnetwork. The computers at the individual sites

are managed and operated by personnel at that site, not by a

single managing entity for the entire system. Besides being

autonomous the computers also can be heterogeneous - of

different architectures and/or operating systems. Each com-

puter site has a large base of existing software that has

been developed to satisfy the needs of the local users.
Each site's local users are unaffected by participation in

the distributed environment unless they chose to participate

in it.

The systems not in the class are distinguished by being

under some degree of common managerial and operational con-

trol or containing homogeneous computer systems. Single

processor systems are excluded by being owned and controlled

by one organization and having a single processor. Mul-

tiprocessor systems, systems containing more than one pro-

cessing element, are owned and managed by a single organiza-

tion and can be dedicated to the accomplishment of a single

task.

.:7

*-°"

i7. , - -" "'U U J U# .'Uq "
- "".-............".....".".'.........".--:". "'-"', "- ""- "* "- "-"..".. . . "- '"'." " "

12

Excluded systems such as Cm* [SWA77], C.mmp [WUL72],

and TI ASC [WAT72] are centrally controlled and have homo-

geneous processing components. Other distributed systems

such as Tandem's Non-Stop systems [KAT78], Eden [LAZ81], RIG

ELAN82], and RSEXEC [TH073] are excluded due to their common

hardware base even though individual local systems may re-

tain some degree of local autonomy. The Thoth system

[CHE79) provides a portable real time operating system that

is implemented on bare machines and that provides a homo-

geneous interface for all software resources on those

machines. It is excluded since existing system services may

not be executable on the system.

2.2.2 System Coordination/Control

The autonomous computer sites in the NAHSC class con-

tain individual computer systems each with an operating sys-

tem that controls the operation of only that individual sys-

tem. No global operating system exists which controls the

operation of the entire system or provides for naming, syn-

chronization, resource management, or error handling.

Excluded systems have an operating system which con-

trols at least in part the overall operation of the system.

'Single processor systems have a single operating system to

control the entire computer system operation. The operating

system for single processor systems maintains global systemfo inl mitan

'.'4

•... .. . , , . , .4., , , . % • , " " , - ,-

13

state information that enables it to control the operation

of the entire system.

Distributed systems excluded from the class have an I

operating system that controls the operation of the entire

system and that maintains global state information. For ex-

ample, the ILLIAC IV array processor has a control unit

which controls the synchronous operation of the 64 process-

ing elements [BAR68]. The GUARDIAN/EXPAND network operating

system provides network control software for networks of

Tandem/16 computers [BLA8O]. The Cm* and C.mmp multiproces-

sor systems have had operating systems (Hydra [WUL81],

StarOS CJON80], and Medusa [OUS80) designed for them which

schedule the various distributed system components.

2.2.3 Interprocess Communication

Two types of communication must be provided by local

operating systems to support the guest layering approach.

The first is the means for local processes to communicate.

This is required to allow the standard interfaces defined to

effect the guest layering to communicate with local

processes. The second is the means to carry on remote com-

munications with a process on another system connected to it

by a communication link. This remote message passing capa-

bility must interface with the network services provideL by

the communication subnetwork.

0oS

'2, ' '.' ; €: ' '4 ' ; '. *€' ' *,,-,.. " "- " " -* " . .

14

A computer network has two principal components - the

autonomous computer systems sometimes called hosts, and the

communication subnetwork which connects the hosts together

[TAN81]. The communication subnetwork consists of switching

elements also called nodes, packet switches, or communica-

tion computers, and transmission lines, also called links,

channels, or circuits. The switching elements control ac-

cess by the hosts to the transmission lines to allow their

orderly use in providing the reliable message passing capa-

bility of the network. All interactions between processes

on separate computer systems must utilize this message pass-

ing capability.

The systems in this class use global network protocols

provided by the communication subnetwork and remote communi-

cation capability provided by the existing local operating

system to effect interprocess communication by message pass-

ing. The use of message passing causes delays and ineffi-

ciencies not always present in systems not in the class.

Since the existing local systems can be heterogeneous, nam-

ing and other conventions will differ, thus increasing the

effort required to effect the message passing.

I..

..................

15

For single processor systems the services provided by

the local operating systems are used for interprocess com-

munication. The single set of naming and protocol conven-

tions of the system are utilized to easily effect the com-

munication. The single systems generally allow communica-

tion between processes using "mail box" services provided by

the local operating system.

Distributed systems not in the class may utilize the

local communication capability of the opezating system to

communicate between processes which are logically distribut-

ed but which may or may not reside on the same processing

node. In other systems the communication is accomplished

using shared memory. The use of a single set of conventions

and a common address space greatly reduces the problems of

interprocess communication both from the standpoint of more

easily implementing it and from considerations of efficiency

and timeliness. Multiprocessor systems such as Cm* use

shared memory to communicate. The Medusa operating system

[OUS80] facilitates the interprocess communication by the

use of a pipe mechanism similar to that found on UNIX sys-

tems.

.

Ia [16

2.2.4 Memory Address Space

The memory address spaces of the local computer systems

are completely disjoint from each other. All communication

between the systems must be done via message passing. Each

autonomous system maintains its own system state tables and

can only share this information with other systems using the

message passing capability. As a result, state tables con-

taining current status information on the distributed system

cannot be maintained. The delays in updating any such

tables and in accessing the tables are large.

For single processor computer systems each process can
4s '

access the same memory address space with access to parts of

that space restricted due to the different levels of

* privilege given the individual users. The operating system

has the highest level of privilege and controls access to

*.. the system state tables.

."..' Distributed systems outside the class may have at least

some part of the memory space shared between the different

processors. For example, Cm* has a single address space

[RAS78]. Direct in-memory communication and the existence

of global state tables is feasible with these shared memory

systems.

.-. -- .

17

2.2.5 Programmers-in-the-Large and End-Users

The NAHCS class is distinguished by the fact that there

may be no organizational or application relationships

between the owners and the end-users of those resources.

The resources shared by the distributed system are initially

developed by the owner programmer for use on the local sys-

tem. This process is termed programming-in-the-small after

DeRemer[DER76]. A resource is a set (possibly empty) of

data objects and a set of associated operations on these ob-

jects. Other components, such as descriptive text, may be

associated with the resource also. A resource may provide

-. its operations to other resources and/or require operations

* .from other resources. The existing resources are incor-

porated into the distributed system by the programmer-in-

the-large (PITL). The end-users of the resources developed

by the PITL need not be related to the PITL in any way. To

the end-user the resources of the distributed system can be

invoked as if the resources were on the local system. The

only requirement is that the end-user be logged into the

distributed system.

.-

.J..

18

For single systems the resources are generally created,

maintained, and used by the same individual or group of in-

dividuals. These programmers-in-the-small create the

modules to satisfy a specific application requirement.

Those resources which are more widely used will be made part

of the local operating system services and thus be available

to all users of that local system.

-: f~: Distributed systems not part of the NAHCS class are

frequently also designed for primary use on specific tasks.

Due to the limited scope of use of the resources, the indi-

viduals developing them will also be the users. The partic-

ular architectural characteristics of the system are ex-

,. ploited to solve the specific task at hand. A common ap-

proach is to separate the task into subtasks each of whi-h

can be accomplished in a separate processing element with

the accomplishment of the task managed by the global operat-

ing system. Examples include the use of task forces in the

StarOS and Medusa operating systems for Cm* [GEH82].

;r..

Many current computer networks differ from the systems

in this class since access to the resources available at re-

mote sites is more difficult than for a local site. The

PITL develops the resource and may want to permit access to

the resources by remote users the same as on a single sys-

tem. However, the remote user must first access the distri-

buted system, then must "log" into the system where the

& •~

.4N,

19

resource exists as an authorized system user and then invoke

that resource using the conventions of that system. Thus, in

systems such as the ARPANET, the user must take considerable
action to gain use of the resources at another site. The

NSW EFOR78] provides a standard interface but the programmer

is limited to accessing only specific software development

tools which have been made part of the system.

--. 4

20

2.4 SUMMARY

This chapter defined the NAHCS class of distributed

systems as a unique class of distributed systems. The five

characteristics which distinguish this class of distributed

systems were discussed. These five characteristics for the

NAHCS class and example systems excluded from the class are

summarized in Figure 2.1.

The characteristics that the distributed system must

have to be part of the NAHCS class provides a framework from

which to design a measurement facility. Many systems have

some of the characteristics but the one or more characteris-

tic that it lacks can have significant impact on the design

of a measurement facility for that system.

Given the definition of the environment, the next task

is to identify the potential users of the measurement capa-

bility and determine "what" to measure. Chapter 3 identi-

fies three types of users and their measurement require-

ments. The identification of a new measurement user, the

PITL, and the unique measurement requirements for these

users are established. Chapter 4 then describes "how" the

requirements can be satisfied in this environment. Chapter

5 presents the design for an example system, Desperanto.

a.

21

ICHARACTERISTIC I NAHCS CRITERIA EXCLUDED
SYSTEMS BY

"' THESE CRITERIA1

Existing Site Autonomous Tandem [KAT78]
Heterogeneous Eden [LAZ81]

I RIG [LAN82]
Cm* [SWA77]
Thoth [CHE79]
RSEXEC [THO77]

I C.mmp [WUL72]
TI ASC [WAT72]

System Local ILLIAC [BAR68]
Coordination/ Tandem [BLA80] I
Control Cm* [JON80]

C.mmp [WUL72] I

Interprocess Message passing Cm* [SWA77]
Communication Medusa [OUS80]

IMemory Address Disjoint Cm* [RAS78]1
I Space No global state I

I PITL Resource Cm* [GEH82]
owner

End-User Non-owner NSW [FOR78)

Figure 2.1 Comparison of System Characteristics

1%

CHAPTER 3

MEASUREMENT FACILITY REQUIREMENTS

3.1 INTRODUCTION

Measurement is the process of obtaining actual perfor-

mance data from the system itself. It is an important as-

pect in the overall management of computer systems. Meas-

urement of single processor systems has been an ongoing ac-

* tivity since the earliest systems. The technical literature

contains many case studies and theoretical results and

several books have been published that address issues in

this area [BOR79, FER78, SV076, DRU73). For systems with

multiple processors there are fewer published results

[JON8OJ and the measurement issues are not as well under-

stood.

I

A measurement facility is the logical combination of

hardware and software that facilitates the obtaining of

measurement data from a particular system. The facility can

be a single physical entity such as a mini-computer based

monitor which collects the data and performs analysis on it

6 I

or it can be made up of a number of components which are

logically connected but physically separated [NUT75J.
22

MESUEEN ACLTYRQURMET -',

3.1INROUCIO .

_ , L . L . . . -. - .N " - • .". ---

%.*%

23

Measurement facilities have been closely associated

with the accounting function for some systems [IBM77,

ROS78]. The requirements for cost accounting are very

dependent on the overall system design. For the NAHCS class

of systems, the accounting function has yet to be defined,

and hence was not included in this effort. When defined for

a particular system it could use part of the measurement fa-

cility to accomplish the accounting function.

This chapter establishes the measurement requirements

for systems in the NAHCS class of distributed systems de-

fined in the previous chapter. The first step in establish-

ing the requirements is the identification of "who" the

measurement facility supports. This research identifies

three categories for systems in the NAHCS class - one which

* has not been previously recognized. For each category,

measurement requirements are identified. After establishing

the "what" in this chapter, Chapters 4 and 5 describe "how"

the iequirements can be satisfied in the general and specif-

ic cases, respectively.

*'1

• - , . " " . •• " ,-A- . % 11 - - % " - . " % " - % - % % " - "- ' • , % - " , % " . " . '

24

3.2 MEASUREMENT SERVICE SUPPORT

Conceptually a computer system can be viewed as a tool

which supports individuals by providing services to assistp
them in accomplishing their assigned tasks. The total spec-

trum of activities performed by individuals using computer

systems can be functionally divided into two parts - that of

providing services for others to use and that of requiring

the use of these provided services (Figure 3.1). An indivi-

dual may perform both activities at different points in time

depending on the specific task being accomplished.

Measurement support is required for both activities.

The specific measurement service required is dependent not

only on the activity but also on the task being accom-

plished. This section briefly describes both the providing

and requiring activities. It then identifies the specific

functions which have measurement support requirements rela-

V, tive to the NAHCS class of systems. The specific measure-

ment requirements for each of the functions are established

in Section 3.3.

. .- -. .a .*

t>'.C

* %./.X t.*'.-.t4. ~.~'.v.. . .*w.*..

25
.JS-

5,..

4..

REQU IRER S .

25 -5

Figure 3.1 Division of Computer Usage by Activity

3.2.1 Service Providers

The providing services activity requires measurement

support to assist in optimizing the performance of the ser-
'9

vice. For single computer systems all of the measurement
'4

support is often provided by the system analysts. They pro-.'4

vide measurement support for all providers whether the ser-

vice they provide is a system service such as the operating

system or an application package like a data base management

system (DBMS). It is convenient to divide the providing ac-

tivity into two groups, the system providers and the appli-

cations providers (Figure 3.2).

5'

.",° . - . . - .- ,- - -- - ... - - . - ,.-'.,,,-o -. . : ,,.

.4 ,rl' i'4~I''l "'"l lll"4"4"Ie " " " Lq .. '1.I., -' . ._ " @J' .. ' "-m -l_ °," "I , ,ll l i p~lq 'II~ll~ l .°."1 q."I I1 ." 1 ~ l ~

26

PROVIDERS

SYSTEM APPLICATION

Figure 3.2 Functional Division of Service Providing Activity

'a-

'a The system providers provide services that facilitate

the use of the computer system by all users. These services

include those of the hardware components, the operating sys-

temn, and the low level communications protocols. System

providers are typically system owners and system or network

analysts. Their measurement requirements are satisfied nor-

mally by system services provided by the operating system or

4... by external measurement tools such as hardware monitors.

.% .,,.

hThe same measurement services are often provided as a system

service to application providers.

• ., rvdr.r.yiclysse'wesan ytmo ewr
4..nlss.Termaurmneureet r atsidnr

relyb ytmsrvcspoie.yte prtn:ytmo

by etra eaueet tos uha adwr oios

".

A..esm esrmntsrie r fe poie sasse
• .se ie oa liain roie .

27

The application providers provide application specific

services to those users requiring them. They use the ser-

vices provided by both the system providers and by other ap-

plication providers to accomplish their tasks. The services

they provide include compilers, text editors, DBMS's, and

statistical analysis or simulation software packages. Ap-

plication providers typically use operating system measure-

ment services to satisfy their measurement requirements.

Distributed systems in the NAHCS class are implemented

as a guest layer on existing, autonomous host systems.

Hence, all NAHCS systems may be classified as "application"

with respect to a given host. The application providers for

the distributed systems can be logically divided into two

categories which parallel the system and application provid-

ers activity division.

The first category includes the design, development,

and maintenance of the distributed software system as an ap-

plication program on a single host system. These distribut-

ed system analysts (DSA) are similar to the system providers

described earlier in that they use the available services to

develop services used by all distributed users. Since the

services are developed as an application on each host, the

measurement support required is similar to that for normal

application providers on non-distributed systems.

28

The second category is the activity of defining the

services provided in the distributed software system using

programming-in-the-large [DER76] techniques. The

programmer-in-the-large (PITL) incorporates individual

. resources into the distributed software system by defining

"" the necessary interfaces. These resources can be either ex-

isting resources previously developed and now part of that

" •system or new resources developed for use in this distribut-

-' ed system. The PITL may own the individual resources or can

specify that a number of resources, some which are not owned

by the PITL and are located at a remote host, are related in

some fashion. This "system of resources" is treated as a

single resource by the distributed system.

This is an activity new and unique to the NAHCS en-
'".4 vironment and, hence, measurement needs in this case have

not been previously explored. This activity is similar to

.4.- that of the application provider's on single systems, except

now system service support comes through the distributed

software system and not directly from the host system. The

system of resources may span several individual computer

systems.

Figure 3.3 shows division of application and system

services providers. The DSAs and PITLs function in the

NAHCS distributed environment while the service providers

and other application providers do not.
t e

29

PROVIDERS

APPLICATION:
non-distributed

SYSTEM , APPLICATION: DSA

\"APPLICATION: PITL

/\

/

NON-DISTRIBUTED DISTRIBUTED

Figure 3.3 Further Division of Service Providing Activity

3.2.2 Service Requirers

The second part of the activity decomposition is the

requiring of services to accomplish specific tasks. Ser-

vices utilized include text editors for program creation and

compilers to translate programs into executable code which

is executed using system services. Measurement services for

most computer systems are provided by a system service, the

accounting system, which provides data on the use of comput-

er system resources.

For the NAHCS class the service requirers, while logged

into the distributed software system, make requests "or sup-

port from a resource that may be non-local. These end-users

N p " o " ." " ." '0 •.• °. ' • °• •° " •°-." - - - ° - " . , • - - °• . -, -•° ° -

30

require measurement support to assist them in making choices

as to what alternative resources to use.

3.2.3 Summary

Figure 3.4 summarizes the measurement support require-

ments for the NAHCS class of systems. In particular, the

functions which require support from the NAHCS measurement

facility are shown. Measurement support not provided by this

facility is provided by other existing measurement capabili-

ties. The activities performed by individuals is divided

into service providing and service requiring. Service pro-

viding is further broken into system and application provid-

ing. The system providers obtain their needed support from

the system services of the host systems. Many of the appli-

cation providers are not part of the distributed system and

are excluded. The DSAs and PITLs do require support. Simi-

larly for the service requirers, those activities not util-

izing the distributed software support system do not require

measurement support from the NAHCS measurement facility.

However, the end-user of the distributed system does require

measurement support. The next section discusses the specif-

ic requirements for each of individuals requiring support

from the facility.

,' " " " " """"": """. . ". , . . ". .".""." "" "" ".... " :

31

PROVIDERS

APPLICATION:
non-distributed

SYSTEM .. xxxx xxx x-.. APPLICATION: DSA
/*xxxxxxxx xxx

,/xxxxxxxxxxxx xxxxx
/xxxxxxxxxxxxx \PLCTO:PT

Xxxxxxxxxxxxxxx xxxxx
*xxxxxxxxxxxxxxxx xxxxx
xxxxxxxxxxxxxxxxx xxxxx

xxxxxxxxxxxxxxxxxx xxxxx

xxxxxxxxxxxxx xxxxxxxxxxx

* xxxxxxxxxxx xxxxxx xxx/
xxxxxxxxxxxxxxlxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

DISTRIBUTED:xxxxxxxxxxxxxxx;x ON-ISTIBUED
End-sersxxxxxxxxxxxc--- Users

Legen: xxx = easuemen suport lreay inplac

Figre .4 easremnt ervce upprt or AHC Sytem

'Sxxxxxxxxx

9.'xxxxxxxx-

DITIBTD .xxxxxxxx- NON-DSTRIUTED

32

3.3 MEASUREMENT REQUIREMENTS FOR NAHCS CLASS

The previous section identified three categories of in-

dividuals in the NAHCS class who have measurement require-

ments. This section describes the function of each of these

categories and establishes their measurement requirements.

Included in the description of the measurement requirements

are the measurement parameters needed to satisfy the re-

quirements. The measurement requirements are used in the

next chapter to design the measurement facility for systems

in the NAHCS class.

Measurement in the NAHCS class of systems is con-

strained by the environment in which the distributed systems

are defined. These constraints affect both "what" can be

measured and "how" it can be measured. The following gives

a summary of the constraints organized by the five distin-

guishing characteristics for the class established in

Chapter 2.

a. Existing sites: The autonomous local systems on

which the distributed support P ,ware resides limit

the information available to-the measurement user. The

end-user has access to resources located at remote

sites only through the distributed support system, and

hence will not have access to the same measurement in-

formation available if he/she were "logged" into the

.................................-...-..-....................... 1
. • . - d - . "' '" " " ' .'.". .." ".". .".'" " " " %

-.. *b. : - - -.

33

remote site. Access restrictions can result from the

requirement for special privileges which are not avail-

able to the end-user. Also, the PITL has limited ac-

cess rights to resources she/he does not own. It may

not be able to obtain all the measurement information

desired, or even if the information can be obtained,

the PITL cannot use the information to modify resources

owned by others.

b. System coordination/control: Coordination between

processes on separate hosts must be done using the net-

work protocols. This implies that time delays of unk-

nown length will occur if an event on one host results

in a measurement activity at another host. Additional-

ly, the clocks on the separate hosts are not necessari-

ly synchronized thus causing errors in the measurement

data if time stamps from two or more hosts need to be

compared in some fashion. Measurement requirements are

limited by these constraints. Analysis described in

later sections has shown that this has no affect on the

measurement requirements for systems in the NAHCS

class.

C. Interprocess communication: All interprocess com-

" munication is done via message passing. This causes

delays in the communication between processes. Also

the additional communication required by the measure-

34

ment facility adds an amount of overhead to the system

which can affect its performance.

In non-distributed systems the main memory is used for

this communication. For many distributed systems there

4s ample communications capability to handle some addi-

tional traffic [SHO80]. Still, the side effects caused

by the additional traffic must be considered in the

analysis.

d. Memory address space: The lack of shared memory ad-

dress space affects both the ability to communicate and

to synchronize the measurements. These constraints are

discussed in b. and c. above.

e. PITL and end-users: The requirement to support the

D.4. PITL and end-users constrains the measurement require-

ments. The PITL, an application provider, and the

* -*"end-user, a service requirer, have limited access

rights to host computer systems in the distributed sys-

tem. Consequently they are limited in the data acces-

sible to them and in how they can use the data to im-

prove the performance of the system.

* -4 The following three sections provide the measurement

%. requirements for the measurement users in the NAHCS class of

systems. Previous measurement efforts as well as the addi-

tional measurement areas for this class were considered in

35

the analysis. Given the constraints above and the NAHCS

class characteristics, the following requirements are the

total requirements for this set of measurement users.

U 3.3.1 Distributed System Analysts

The distributed system analysts design and maintain the

distributed software support system. They create the dis-

tributed software support system as s'stem programmers on

the local systems. Some additional system privileges may be

provided to these individuals. System services on the local

system as well as the capabilities provided by the communi-

cation subnetwork will be the tools used by these program-

mers. The distributed system analyst performs functions

similar to other system providers discussed in section

3.2.1.

The distributed system analyst will have available the

system services of the host systems to satisfy many of

his/her measurement requirements. These include accounting

-. data, special operating system tools, and locally defined

services EFER78]. Additionally, measurement capabilities

provided as part of the communication subnetwork

[COL71,SHOS0] and related efforts in the area of distributed

software development [SCH80, LAN82] are available. These
a.

, measurement facilities are already in place and presented

4..-

* .- *

a:1

36

extensively in the literature, and thus will not be dis-

cussed further.

4 - 3.3.2 PITL

I.

The PITL requires measurement service to assist in

managing the resources she/he owns. Management of a

resource requires responding to changing requirements, both

from external sources (end-users) and internal sources (ac-

tual execution needs).

External usage patterns may change leading to decisions

to modify the resource to improve its performance. The

usage patterns also provide the PITL with information needed

to evaluate the impact of potential resource modifications

to meet changing end-user requirements. Some modifications

would be transparent to the end-user and thus have no im-

pact, while others such as redefining the resource interface

or removing the resource from the system would have major

imr1act.

Internal activity, the characteristics of how the

resource actually responds to a request for its service, may

also vary with time. The PITL must analyze the performance

of the resource to ensure that performance criteria are

still being met. Increases in the response time on local or

remote hosts or changes in the resources that provide ser-
vices to this resource may affect the performance of the

0.'
, . L E x 4

,q.U.~

37

owned resource.

Both the external and internal activity must be moni-

tored to support decisions by the PITL. The measurement ob-

jectives that satisfy these requirements are described

below.

PITL OBJECTIVE 1: Provide usage characteristics data for

owned resources.

A single parameter provides the measurement data that

satisfies this objective - "user count". For each end-user

who requires a service provided by the resource, the number

of requests for each service is measured. The length of

time that the count is maintained is specified by the PITL.

PITL OBJECTIVE 2: Provide resource response data for owned

resources.

The response of a resource to a request for a service

it provides is measured by the "end-to-end response time".

This parameter is the elapsed time between the receipt of a

request for a particular service by the resource and the

transmittal of the response to the requester. To satisfy

the request the owned resource might request service from

one or more other resources which in turn can make further

requests for service.

Z.-

38

The end-to-end response time parameter alone provides

no information on how that time is spent. The response time

can be divided into two components:

(1) the time that the owned resource is active

serving the end-user request, the "active time",

and

(2) the time that the owned resource is idle wait-

ing for a response from the resource it requested

service from, the "wait time".

The wait time includes end-to-end response time for request-

4ed services and the time involved in transmitting requests

'and responses from/to the resource, the "communication

time". The actions which may take place and definitions for

these times are as follows:

tI Resource A receives a request for the service it

provides and begins servicing that request.

t 2 A requires the service provided by resource B lo-

cated at a remote location relative to A. A re-

quests the service of B and the request is

transmitted to B.

t3 B receives the request and begins servicing it.

t4 B completes servicing the request and returns a

response to A.

7,..

39

t 5 A receives the response and starts servicing the

original request again.

t 6 A completes servicing the request and returns a

-* response to the original requester.

.. " .

Definition of parameters relative to resource A:

End-to-end response time t6 tl

Active time t 2 tl + t6 t5

Wait time t 5 t

Communication time t3 - t2 + t5 t4

Remote response time t4 t3

End-to-end response times, active time, and wait time

parameters require measurement activity only relative to the

owned resource. However, to determine how the wait time is

spent requires measurement activity relative to non-owned

resources. A lack of access rights and autonomy constraints

can limit the amount of information which can be collected.

As a result the granularity of the response time data is

limited. This is a unique measurement characteristic of the

NAHCS class of systems since typically the granularity of

the measurement is only limited by the physical measurement

facility, not by other constraints. The PITL can identify

.1'N

_ q ... , % " . °-. . " °. ~. °.u ° ". -. •0 0. ° " . '_, . °- .. .° . . .'. . , .*° o . . . " - . .

-j, - -3

40

that a bottleneck exists and based on available information

can initiate discussions with other PITLs to look into the

source of the problem. The PITL's decision making power is

limited by this.

- 3.3.3 End-User

The end-users are the individuals who attempt to accom-

plish their specific tasks in an optimum manner using either'.A

existing resources available in the local or distributed en-

vironment or by creating modules in the local environment.

The end-user requires measurement data to support decisions

about which resources in the distributed environment to use.

The end-users may desire to obtain data on the perfor-

mance of several resources, each of which could satisfy the

user's needs. For example, multiple copies of a Pascal com-

piler may be available at different sites in the distributed

system. To determine which compiler gives the best perfor-

mance for the type of programs being developed by the user,

measurements of performance statistics, such as CPU time,

memory used, and response times, are necessary. When the

best response time is identified, other factors such as cost

and ease of use determined by non-measurement capabilities

can be evaluated by the more sophisticated user to request

the use of a particular compiler on a particular host. The

same argument applies to other resources as well.

C.T: ' *r " '. v " " ' :- " .- - " " - " ' ' '- .' .- -" -,-.-" . . .". ",. . -. '•. - .-. "-.-

*' -~ '- -. * -;---:---: -: . - . - . . -
• .K

41

Typically cost accounting tends to be a system depen-

dent function tied to usage patterns and to organizational

philosophies. Historically this function has been separate

from the measurement facility [DRU73, SV076, ROS78]. Hence,

cost accounting is not within the scope of this effort and

will not be addressed further in the design of the measure-

ment facility.

A single measurement objective satisfies the end-user

requirements.

End-User Objective: Provide response time data for requested

services.

The response time is the elapsed time from the request

for service by the end-user until the service is completed

and a response is transmitted to the end-user. This end-

to-end response time for each service requested provides the

end-user only with a measure of the performance of the ser-

vice.

.

42

3.4 SUMMARY

This chapter established "what" to measure to satisfy

the requirements for the NAHCS class of distributed environ-

ments. The requirements are based on the needs of the three

identified measurement users - distributed system analysts,

PITLs, and end-users. The distributed system analyst func-

tions much like an application programmer and their require-

ments can be satisfied through existing measurement capabil-

ities. The PITLs have never before been identified as a

measurement user along with their requirements for managing

resources. Finally, the end-users require response time

measurements to satisfy their needs.

The specific measurement requirements are affected by

the characteristics of the NAHCS class of distributed sys-

tems. The most significant affect is that the granularity

of the measurement data which can be collected is limited by

the constraints of the class.

The measurement requirements established in this

chapter are utilized in the next step in the design process,

the "how" of the measurement problem. The next chapter es-

tablishes the design approach and Chapter 5 specifies an ex-

ample implementation.

*'i

CHAPTER 4

MEASUREMENT FACILITY DESIGN

4.1 INTRODUCTION

A methodology for the design of measurement facilities

is an area which has received very little attention in the

past. Most measurement facilities have been developed in an

ad hoc fashion to meet the immediate needs for already ex-

isting systems. The resulting measurement facilities are

inefficient and do not provide all the desired information.

Previous chapters have established the environment and

the requirements for the measurement facility in the NAHCS

class. This chapter introduces a measurement facility model

and describes how it can be used during the design of meas-

urement facilities. A design approach utilizing this model

to design a measurement facility for the NAHCS class that

satisfies the requirements from Chapter 3 is presented. The

general design is used in the next chapter to design a fa-

cility for a specific example distributed software system.

434

:! 1

"," L'- -. -'- ;" "-' - .- "."-"/ .- 2 "..' -'..'..'.,' % " ".. o" -," "" -" .' " "' ''-''-' - ' .' • .' .' . "- ,, "-: " ", -. -. -

- . - . . - . . r .. -I W '

44

4.2 MEASUREMENT FACILITY DESIGN APPROACH

The design of a system begins with identification of

the functions the system is to perform. Once the functions

are identified the system design process starts at the

*- highest level and then proceeds in a step-wise fashion to

lower and lower levels until the design is complete. This

is similar to the design approach for any software system as

well as for systems in general.

A measurement facility can logically be divided into

four distinct functions - analysis, measurement, instrumen-

tation, and control. This research for the first time iden-

tifies the interactions among these functions and defines a

model describing these interactions. The model serves as

the basis for the design approach for measurement facili-

ties.

4.2.1 General Measurement Facility Model

The four main functions and interactions among the

functions are represented by the model of the measurement

facility given in Figure 4.1. This model presents the flow

of measurement data from the system under study through the

measurement facility and the flow of control in the measure-

ment facility. The four functions present in a measurement

facility are not necessarily uniquely identifiable as

45

separate physical components but are logically present. A

brief description of each of the functions follows.

The control function is the interface between the user

and the other components of the facility. It receives com-

mands from the user either interactively via a display dev-

ice or non-interactively from a batch type input. The com-

mands may initiate or terminate a measurement session, pro-

vide options that control the collection of measurement

data, or provide options for the analysis of measurement

data. In an interactive environment, the control function

asks the user for commands and provides intermediate feed-

back to the user on the status of the measurement session.

The analysis function provides the data reduction capa-

bility necessary to process the data collected by the meas-

urement function and to provide the information needed to

satisfy the user's measurement objectives in the form of

measurement reports. The analysis is accomplished under the

control of the user and may be physically done on the system

under measurement or may be done on a separate system.

k * * .

77W. -. W

46

M < ..< ...
IEI II
IA I---IINSTRUMENTATION I ----- >1 MEASUREMENT I
IS I I
Ut I I _ _ __ _ _ _I

I S I I I COTO ... > NLSSI I

USEI _ _ -MAUREENT ______

FAILT INTEFAC

SYSER-MEASUREMENT
I INFAILIY ITERAC

I ~ ~ -- - - > Data__________ Flow- - _____________

igr 4. SYTMsrmn Failt MESUEMNTUeR

I I..7 7 7 7 -

47

The instrumentation function provides the interface to

the system under study. It detects the signals/events that

represent the activities of interest and provides the meas-

urement function with the appropriate data. This function

may be implemented in hardware or software.

The measurement function is a key function in the fa-

cility. It receives data from the instrumentation function,

determines the action to take with respect to the data based

on commands from the control function, and provides the

resulting data to the analysis function.

4.2.2 Use of Existing Measurement Facilities

Consistent with the philosophy of systems in the NAHCS

class, the use of existing measurement resources were inves-

tigated. The following briefly surveys representative meas-

urement facilities which currently exist. These facilities

include examples from both distributed and non-distributed

environments.

Several sophisticated measurement facilities based on

the software monitor concept have been implemented for sin-

gle processor systems [ROS78]. These facilities are system

specific and cannot be transported to systems other than the

ones they were designed for. Furthermore, measurements tak-

en by one facility/monitor cannot necessarily be compared to

those taken by another due to differences in definition of

• -. " -'...'-" .%"

48

terms and in architectural differences. IBM's Resource

Management Facility(RMF) EIBM77], Univac's Software Instru-

mentation Package(SIP) [UNI78], and the Generalized Monitor

Facility(GMF) [WAL803 for the Honeywell 6000 series comput-

ers are examples of these facilities. These facilities pro-

vide information primarily on the utilization of the system

resources. CPU busy, CPU wait, channel busy, CPU/channel

overlap, memory reference map, I/O data set access patterns,

job statistics, and system trace data are examples of the

type of data collected by these facilities.

Measurement facilities for distributed systems are re-

latively few compared to the work which has been done for

single processor systems. The following examples illustrate

approaches to the design of measurement facilities for dis-

tributed systems.

ARPANET: The ARPANET, a long haul network, included a Net-

work Measurement Center(NMC) with the responsibility for de-

fining and controlling the measurements needed to support

the modeling efforts for the network and to determine the

performance of the network ECOL71]. The measurement facili-

ty component had extensive measurement capabilities located

in the IMP's, the message switching computers located at the

distributed sites. The measurement facilities accumulate .l

data on the overall performance of the network or some -.

p.

~. -.

.7-.

49

segment of the network, obtain data at an IMP relative to

queue length and routing information, and obtain traces of

the messages as they flow through the network. The emphasis

of the measurements was on optimizing the flow of messages

through the network.

Computer Network Monitoring System(CNMS): The CNMS was

designed at the University of Waterloo for the purpose of

monitoring the states and activities of each node in the

network and of the communication links between the nodes

[KOL77, BUC77, MOR75]. The measurement system was designed

to be used for a local area network and included in its com-

ponents a remotely controlled hybrid monitor at each node to

gather data on that node. The operation of these monitors

were under control of a mini-computer, called the controll-

er. The user determined what information was desired and the

controller then directed the individual monitors. The com-

ponents of the CNMS were envisioned to be minicomputers

external to the network connected together by communication

links and connected to the network components by probes.

Ethernet: The performance of Ethernet, a local area network

using a carrier sense multiple access with collision

detection(CSMA/CD) protocol, was studied by Shoch [SHO80].

The purpose of the study was to determine the performance of

the communication subnetwork, a high speed bus, testing the

50

CSMA/CD protocol under different load conditions. The meas-

urement facility was implemented by dedicating one node on

the network as a promiscuous node that observed all activity

on the communications subnetwork and recorded data of in-

terest. The performance study provided information on net-

work delays, traffic distributions, traffic types, and col-

lision and error rates.

-:[Network Measurement Machine (NMM): The NMM was designed at

the National Bureau of Standards for the purpose of measur-

ing the performance of computer networks in an interactive

'". environment in terms of the service they provide [ABR79].

The NMM was implemented on a PDP 11/20 with both regular and

special purpose hardware. The special purpose hardware was

used to connect the NMM to the network. The parameters of

interest, the response time, turnaround time, and

throughput, are used to measure the service provided to the

user by the network, but not the internal operation of the

host computer systems.

Later measurement work at NBS was done by Amer [AME82J.

His local area network measurement center collects perfor-

* mance data on the traffic on the network such as network de-

" lays, traffic distributions, and'types of traffic.

:.5

.

51

National Software Works(NSW) - Foreman: The NSW Foreman in-

cluded a Performance Measurement Package(PMP) that provided

basic resource utilization characteristics of programs

[SCH80]. The system was designed for the TENEX/TOPS-20

operating system and provided utilization statistics for in-

dividual programs. System time, CPU time, system load,

group load, and pager statistics were measured for each

event selected for measurement.

Figure 4.2 provides a summary of these measurement fa-

cilities. The existing facilities are doing a good job at

meeting the requirements they were designed to satisfy -

system resource utilizations. However, the measurement ob-

jectives for the facilities differ from those of the NAHCS

facilities. Consequently, they do not measure the right

things and so are inadequate for our needs.

QJ

%.

-a..

'.

-ii

4.:

..°. * * *.

52

FACILITY OBJECTIVE SYSTEM PARAMETER
REQUIREMENTS ORIENTATION

RMF System tuning Operating system Job and
* ' GMF Privileged user resource

SIP utilization

ARPANET Network Instrumented IMP Network
modelling & traffic
evaluation

CNMS Node and link External to Resource
evaluation network utilization

Ethernet Network Ethernet Network
evaluation utilization

PMP Program National Software Program
evaluation Works utilization

NMM Network External to Response time
service network Throughput

NAHCS Resource None Response time
.-. Class management Usage

End-user None Response time
support

Figure 4.2 Comparison of Measurement Facilities

'S

2.

4--%4. - .S- . . .h* ***, •*** *. .p * *- *.

.-°: *.-" _.-- -*..- -°

53

4.3 NAHCS MEASUREMENT FACILITY DESIGN

The general design of the measurement facility for the

distributed system considers the two categories of individu-

als requiring distributed measurement support, PITL and

end-users, their requirements, and the distributed environ-

ment that it is designed to function in. The general design

presented in this section serves as a model from which

specific facilities can be designed and implemented for sys-

tems in this class.

The approach to the design of measurement facilities in

general was developed during the early part of this

research. The methodology was successfully applied to the

design of measurement facilities for three different distri-

buted systems. The details of the methodology and the

results from applying it have been documented in a Depart-

ment of Computer and Information Science internal document.

The validity of the approach and the benefits from using it

were established in these efforts.

The approach utilizes the measurement facility model

and the flow of data within the facility (Figure 4.1).

Starting with the analysis function which satisfies the

measurement requirements, the design sequence proceeds logi-

cally in the direction opposite to the flow of data in the

facility.

w .. I. , . . - ° . .**. * ° -2. . -. :- ° --. . .-

.._______"_______-_________ --r. - " " ." . - S

54

4.3.1 Analysis

There are two design options for the analysis function

for any system. The first approach is to collect all meas-

-urement records at specific physical locations in the sys-

temn. The analysis can be performed at these locations or at

another location. A second approach is to collect and

1.*1 analyze the data at the location where the measurement func-
V41

tion resides, thus reducing the system overhead involved in

moving the records to a different location.

The analysis function for distributed systems in the

NAHCS class can be designed using either approach described

above. For most measurements the analysis can be accom-

plished at the location where the measurement function re-

sides. This assumes the requisite capability at that loca-

tion to support implementation of the analysis function. If

the capability does n, c exist at all sites or if the data

collected at multiple locations must be combined to obtain a

value for the required analysis parameter then the first ap-

proach is needed. This implies a need for consistent mean-

ing for the data collected and may require calibration of

* clocks between the individual measurement facilities.

ii'p

"'p°

'.-

55

4.3.2 Measurement

The measurement function obtains, processes, and

records the data from the instrumentation function and pro-

vides it to the analysis function under direction of the

control function. Its design is influenced to a great ex-

tent by the structure of these other functions with which it

interfaces. The measurement requirements of the PITLs and

end-users are significantly different and are described in

the next two subsections.

4.3.2.1 PITL Measurement Design

The measurement requirements for the PITL are to pro-

vide usage and response time data for the owned resource.

Data for those parameters which require no information other

than on the resource activity can best be obtained at the

resource itself. By placing the measurement function adja-

cent to the resource being measured all requests for service

from a resource, all responses from the resource, and all

requests from the resource can be detected by the measure-

ment function.

To determine information on the components of the end-

to-end response time, when the owned resource makes a re-

quest for service from another resource, measurement actions

must be taken on other than the owned resource. To collect

4

56

this data, called trace data, a slightly more complicated

design is required. The design of the trace facility is

complicated not only by the fact that the trace cannot be

done strictly locally, but also that a request for a given

operation may travel not only to resources which are owned

by the individual making the measurement request, but also

* .directly or indirectly to other resources and to resources

- that are strictly local and have not been installed into the

distributed environment.

Figure 4.3 illustrates that a resource may require ser-

vices from resources owned by other PITLs. In this case,

resource A requires service from resource B. Resource B in

turn requires service from resource C to satisfy the request

from A. Resource B has a different owner than A and C may

have yet another owner. The owner of B has restricted the

amount of information that is available to users of that

resource. The restriction could be for privacy or security

reasons or due to the unavailability of the data.

.%

.- . ..,.-V . -

57

A B C

I I < - - -- - - - I I < - - - -- - - - I I

Request for service ----------- >
Response to request <------

Figure 4.3 Example of Resource Interaction

The trace capability is designed as a partial one,

guaranteeing end-to-end information, as well as measurement

data on all distributed resources traversed for which the

measurement requester has the proper access rights. The

measurement function is distributed across nodes in the sys-

tem.

The measurement function is activated by the PITL re-

questing measurement support from the distributed system.

The options specified in the request determine the type,

duration, and disposition of results for the measurement

session.

.

..% .

58

4.3.2.2 End-User Measurement Design

The measurement requirement for the end-user is to pro-

*[vide end-to-end response time for requested services to the

user. Since the parameters are concerned with the interac-

tion of the end-user with the distributed system, the design

simply provides for placing the measurement function at the

point where this interaction takes place. When a distribut-

ed user enters the distributed environment by "logging" into

the distributed system a terminal server is created which

henceforth acts as the interface between the user and the

distributed system, including the measurement function for

the end-user.

The measurement function is activated at the request of

the end-user and will exist for only as long as the end-user

desires. The end-user can specify measurement options such

as length of measurement, parameters of interest, and

display of results desired.

4.3.3 Instrumentation

The instrumentation function provides the interface of

the measurement function to the measured system and hence

its design is influenced by the structure of both. For dis-

tributed systems this function is usually Histributed. Once

O;' the parameters have been identified and the measurement

function designed the method of extraction of the data can

a• "..

*. * * *' **'* '......0 ' ' \

-o -7

59

be determined. For the NAHCS class it is implemented as

part of the distributed system software. The detection and

recording of the measurement data should have the least im-

pact on the system and yet provide the most complete set of

data possible.

4.3.4 Control

The control function interfaces the user to the meas-

urement facility and controls the collection and the subse-

quent analysis of the data. The control function design

depends very heavily on the design of the measurement and

analysis functions as well as the user interface to the fa-

cility.

The control function for the measurement facility in

this class will use the framework provided for the distri-

buted system design. It will be implemented as a resource

on individual local sites in the system.

'.'

-pv*.~~~.

" 'S

60

4.4 CONCLUSIO'.

This chapter presented the general design for measure-

ment facilities in the class of distributed environments in-

troduced in Chapter 2. A general measurement facility model
-- 4.

and design methodology for all systems was introduced. The

design methodology was used to design this facility.

For these distributed systems all functions with the

possible exception of the analysis function will be distri-

buted. This is consistent with the overall design of the

distributed system. However, even though the functions are

distributed they act independently at each site with no cen-

tral control function for the measurements facility.

The next chapter utilizes the general design to give a

more specification of the measurement facility for a specif-

ic example system in this class. The example system,

Desperanto, is described and the approach to implementing

the facility for the Desperanto system is given.

.4

4%.%

4.-..
'*54.

,- .

* 1. ; " ' " " - ' -"i .-., . - ---" -" .' -"- ' -" -' -" -2 '; -, -' '' .. " ' - .; -" ." ..2 .. ' .i .,.., ' -..;. . .-.

CHAPTER 5

MEASUREMENT FACILITY IMPLEMENTATION

5.1 INTRODUCTION

- The previous chapters established the requirements for

and the general design of a measurement facility for the

NAHCS class of distributed environments. This chapter

describes the design for an example system in this class.

This example system, Desperanto, is under development at The

Ohio State University [MAM83]. The design is based on the

general design from Chapter 4. Existing measurement facili-

ties are not able to support the measurement facility re-

quirements. The measurement functions are performed by

servers which can be implemented using measurement primi-

tives defined in this chapter. Detailed specifications for

the servers are given in Appendix B.

.61

-4

u|:.

I,

62j

5.2 DESPERANTO SOFTWARE SUPPORT SYSTEM

Desperanto, an Esperanto for Distributed Systems, is a

comprehensive software system which has been designed to

support the sharing of resources in the NAHCS class of sys-

tems described in Chapter 2 [MAMBI, MAM82b]. The design ef-

4fort has been ongoing at The Ohio State University for over

three years and implementation is proceeding.

A model of the Desperanto system is provided in Figure

5.1. The sharable resources reside at various locations in

the local area network. Each location/site in the network is

connected to the communications subnetwork which provides

reliable message passing capability. At each site Desperan-

to resides as a guest on the local operating system, running

as one or more processes under constraints of that local

operating system. Each site has a standard Desperanto moni-

tor which provides run-time support including process

management, communication, directory assistance, deadlock

analysis, etc. in cooperation with the standard monitors at

other network sites. Implementation of the standard monitor

is system dependent and may require several processes to

perform the various functions required of it. It is located

at the Presentation Layer as defined by the ISO Network Ar-

chitecture [DES80,ZIMBO].

V

..

.-

63

HOST A HOST B

IResource Resource Resource Resource I

I Resource I Resource I IResource I IResource

I llnterfacel Interfacel I I llnterfacel Interfacel I

I

Desperanto I Local Desperanto Local
Monitor I Operating Monitor Operating

I System System

* I
I Communications Subnetwork

Figure 5.1 Desperanto System Model

Each resource has a unique logical server which creates

a server process to perform the resource operations and

which provides resource unique services. The resource-

dependent information contained in the resource interface is

provided by the programmer who is responsible for

programming-in-the-large, the individual who specifies the

resource to Desperanto.

6 An individual user of any computer system in the net-

work will normally use the native system without support

'S

64

Each resource has a unique logical server which creates

a server process to perform the resource operations and

which provides resource unique services. The resource-

dependent information contained in the resource interface is

provided by the programmer who is responsible for

programming-in-the-large, the individual who specifies the

resource to Desperanto.

An individual user of any computer system in the net-

work will normally use the native system without support

from, or in fact knowledge of, Desperanto. The user's appli-

cation may require services from another system which can be

provided by user defined protocols or other existing commun-

ications capabilities. If a user choses to take advantage of

the facilities of Desperanto then he/she must "log" into the

Desperanto system. Requests for support from resources known

to Desperanto will be handled by the Desperanto monitor. A

terminal server process provides a "friendly" interface to

the Desperanto system for all users.

Desperanto provides a modular, extensible set of common

services to application programmers and a coherent and con-

sistent interface to end-users, all without change to exist-

ing local software.

ILO .{ . % . ., % •-. o , . ,. , %..- . . - .

65

5.2.1 Example Desperanto Interaction

To illustrate the operation of the Desperanto system an

example session is described in this section. Figure 5.2

illustrates the interactions in the Desperanto system for

this example. It is assumed that the standard servers at two

sites, A and B, are already running. They are denoted by Al

and BI respectively. Distributed addresses or ports for all

the processes known to Desperanto have unique mailbox id's.

At site A a server is currently running in support of a re-

quest from a user. In this example this server requests

service from a resource which is located at site B. The

server for the resource at site B may or may not be current-

ly running or active. The interaction would be as follows:

1. Requester A3 notifies the standard server, Al,

that it requires service from resource B3 at

site B.

2. Standard server Al creates a process to run A3's

module interface and passes the mailbox/port id

to this process, A2.

3. The requesting server acknowledges the module

interface process when it is notified of it's

existence and passes a request for support from

resource B3 to process A2.

St

66

HOST A HOST B

Rsource A3 Resource B3

I IResource I I IResource
I Interface A2 I I llnterface B2 I

Desperanto I Local Desperanto Local
Monitor I Operating Monitor Operating

I System System
Al I Bl

I I

Communications Subnetwork I

Figure 5.2 Desperanto Interaction Example

A.J

9.J

I

-.-4 -..''""- '. '.. .-'--,'-,;-".. ' '. .,,.;. .v ". ,-v .', .''. ,,,,,'' '\ ' .-,. ,''''''' -'

---.. ",~ -- '- - - -

-4.,

67

4. Module interface A2 notes the request and for-

wards it on to Al.

5. Standard server Al notes the request and deter-

mines the location of the requested resource

(B). The request is sent by Al to B1 using the

message passing capability of the subcommunica-

tions network.

6. Standard server BI notes the request, determines

the correct resource interface, creates a

process(B2) to run the interface, if it is not

already running, and passes the request to B2.

7. Tool interface B2 notes the request, determines

the proper server process, and creates it (B3).

The request is then passed to B3.

8. Provider server B3 acknowledges the connections,

passes its port or mailbox id to B2.

9. The connections are noted and a message with

needed connection information is forwarded from

B2 to Bl to Al to A2 to A3, in turn.

10. Requester A3 then sends the request to B3 using

the connection information it has just received.

-A

4. .1.
[..'. *

.- Z - -

68

11. Provider B3 then processes the request during

which time it may make one or more distributed

requests for service from other resources known

to Desperanto. When the request has been com-

pleted the results are returned to A3.

At this time the connection could be broken or it could be

retained for further requests. The process of breaking the

connection has a similar sequence of actions to when it was

established.

4b

V

S"?

77 .

69

5.3 DESPERANTO MEASUREMENT FACILITY DESIGN

In Chapter 4 an overview of the design of a distributed

measurement facility for systems in the NAHCS class was

given. The overview provided a summary of requirements for

the PITL and end-users and described the general design of

the measurement facility.

This section provides additional details on the design

and operation of the measurement facility in the NAHCS

class, using Desperanto to illustrate the design. The

overall operation and the user interface design are dis-

cussed first. Next the measurement servers which provide

the measurement and instrumentation functions are discussed

followed by brief discussions of the control and the

analysis functions. Detailed specification of the algorithms

and data structures for the design are included in the ap-

pendices.

5.3.1 Measurement Facility Operation

The measurement facility has been designed as a

comprehensive facility which meets the needs of the identi-

fied users. For the PITL and end-users a separate friendly

interface must be provided which facilitates the use of the

facility for that particular user. The facility does not

require special training for the users.

.

["• . - "- " - - - -.-- - "-. - • "" " . ."-'- . -" - " -"*"""- ' " . "-"." -.. ' .-... "" " , ... ". -.

70

5.3.1.1 End-User Interface

The end-user desires measurement information on the

response time for resources of interest. Since the end-user

cannot be assumed to have a background in measurement, the

measurement facility to user interface must be easy to use

with maximum assistance available. The user only needs to

be aware that measurement support does exist and knows how

to initiate a request for measurement support.

The normal end-user will use a menu driven system to

assist in constructing the request. For the end-user ex-

perienced in using the measurement capability the option of

bypassing the detailed menu and issuing a single command to

alleviate unnecessary prompting and iterative selection of

measurement options is provided.

Figure 5.3 provides the measurement options and the

format for measurement commands for starting and stopping

measurements and for analyzing the collected data.

.

9.

;.4

.4

_0°
1

o

71

OPTION NAME OPTION VALUES REMARKS

TYPE Session* Data entire session

Requeat:id Data for a single service (id)

ENDOPT End Stop at end of session
Time:y Stop in y minutes
Count:x* Stop after x requests
Halt Stop immediately
Clock:z Stop at clock time z

ANLYOPT End* Do when measurement stops
Defer Do upon user request
Delete Do not analyze data

LEVEL All* Display all parameters
Select:x Display parameters x

OUTPUT Crt* Display on Crt
Print Display on hard copy device

* - default values

COMMAND FORMATS
START USER MEAS(TYPE,ENDOPT,ANLYOPT)
STOP USER MEAS (ENDOPT, ANLYOPT)

ANALYZEUSERMEAS(LEVEL,OUTPUT)

Figure 5.3 Command Options and Formats for
End-User Measurements

6% " . . - . - . - ' ' . . - '' ' / ,, "'"• ."-' " - . % , • '• . "- ,b . "-

-*. . .- - . - . , '*. - - - - - . , , % ', ' - - ' V . : :

\ - J b * . t o-. j•"-.- - ". ". -" " , - --- 7 - - .' --- . -' ' .
'

. - -

72

5.3.1.2 PITL Interface

In a similar fashion as for the end-user, the PITL re-

quires an interface to the measurement facility that facili-

tates the use of it. Again a menu-driven interface with the

option to override it for the experienced user is desired.

To start a measurement session, the PITL must be logged into

Desperanto but does not need to remain logged in during the

duration of the session. The session can end at that point

in time determined by the ENDOPT parameter in the measure-

ment request. At a later time the PITL can again log into

Desperanto and obtain analysis results from previous meas-

urement session(s).

Figure 5.4 gives the options and formats for the PITL

measurement commands.

'p•O.

.
-~..*-*.*

_ _ _ _____ _ _ _ _ _ _73

OPTION OPTION VALUE REMARKS

RESOURCE xyz Resource id

TYPE Local* Only owned resource
Trace Partial trace plus local

STARTOPT Next* Start at next request
Count:x Start after x requests
Time:y Start at system clock time y

INTERVAL Count:x* Store summary record
Time:y each x requests or y minutes

ENDOPT Count:x* Stop after x records
Clock:z Stop at clock time z
Halt Stop immediately

ANLYOPT End Do when measurement stops
Defer* Do upon user request
Delete Do not analyze data

LEVEL All* Display all parameters
Select:x Display parameters x

OUTPUT Crt* Display on Crt
Print Display on hard copy device

* - default values

COMMAND FORMATS

STARTPITLMEAS(RESOURCE,TYPE, STARTOPT, INTERVAL,
ENDOPT,ANLYOPT)

STOP PITL MEAS(RESOURCE,ENDOPT,ANLYOPT)
ANALYZE PITL MEAS(LEVEL,OUTPUT)

Figure 5.4 Command Options and Formats for
PITL Measurement

4

"]

* .~~ - -.

74

5.3.2 Measurement Server

The measurement servers for the measurement facility

are the processes which provide the measurement and most of

the instrumentation functions. The servers are logically

placed so that they are in the path of the distributed in-

teractions for the system. The actual details of the imple-

mentation of the servers are dependent on the host system on

which they are being placed. For systems that support such a

capability, they will be processes which are created in

response to a user request for measurement support and will

remain active until the measurements are completed.

5.3.2.1 End-User Measurement Server

The server for the end-user is placed in a logical po-

sition so that all requests for distributed support are

routed through this server before they are acted on by the

distributed system (see Figure 5.5). The measurement server

port becomes the pseudo address for the distributed system

server, the message is routed to this port, the appropriate

data gathered, and then the message is forwarded on to the

distributed server unchanged. When a response is returned

for the end-user the port or address for the message known

to the standard distributed server is again that of the

->, measurement server. All communication between these two

will be routed through the measurement server and the meas-

'p.

75

ures of interest will be collected at this point. Depending

on the measurement parameter options selected by the end-

user this server could remain in place throughout the dis-

tributed session or could be active for some portion of the

session.

.v.

-- k/'_

76

END-USER END-USER

7 T
"" -"I F

S'I I TI_ '4' I 4

III I I I
"I ITERMINAL I I TERMINAL III- I I I I
"I ISERVER I I SERVER II I I I I __ I
I * T --- - -

MEASUREMENT

""I I II
"..SERVERI

I I I I

IDESPERANTO ILOCAL DESPERANTO ILOCAL
OPERATING IIOPERATING

IMONITOR ISYSTEM IMONITOR ISYSTEM

,., I II I_ _ _

To other distributed sites To other distributed sites

STANDARD EXECUTION EXECUTION WITH MEASUREMENT

Figure 5.5 Measurement Server for the End-User

=-.*..

• 'Si.

iS,

..

77

5.3.2.2 PITL Server

For the PITL, the measurement server is placed between

the standard resource interface server and the standard

Desperanto monitor so that all requests for the resource are

routed through the measurement server prior to being re-

ceived by the standard resource interface server (see Figure

5.6). All responses from the resource are directed to the

same measurement server prior to being sent to the requester

using the distributed software system. The measurement

server becomes the pseudo address for the resource's inter-

face server. The measurement server provides the measurement

function. In the case of the option to obtain usage measure-

ments on a resource the instrumentation function will also

be taken care of by the same server. On the other hand, for

trace of resource requests the measurement function is han-

dled by the measurement server associated at the resource

but the instrumentation function will be distributed across

the system. Each of these cases is addressed separately.

-p

z'i.

4...

0I
4.!
-Sl

* ** .4.* ~ . .. ~ - . - - -

.4

.4

78

-- V

RESOURCE T] RESOURCE TI _ _ _ I I I _ _ I I
I RESOURCE I n RESOURCE -- I I
ISERVER [[SERVER [

I I II I.

I1IIII"4i

I MEASUREMENT I IIII II I .,
I SERVER I.
I III I

IDESPERANTO ILOCAL I IDESPERANTO ILOCAL
I IOPERATING I I IOPERATING I
MONITOR ISYSTEM I MONITOR ISYSTEM o

I I

I I

To other distributed sites To other distributed sites

STANDARD EXECUTION EXECUTION WITH MEASUREMENT

Figure 5.6 Measurement Server for the PITL

-.d.

° . - -

.7

79

The option of gathering the data on resource usage in-

volves creating a server which logically exists next to the

server process for the resource so that all communication to

and from the resource is routed through the measurement

K server. For long term measurements this means that each

time the resource is invoked the measurement server is also

invoked and placed in the appropriate location. An area of

storage must be set aside for storing the data from the

server and this data must be kept through many invocations

of the resource. Hence some process which is active for an

extended period must be used to facilitate this. The stan-

dard Desperanto monitor is that process. It has knowledge of

the data storage and invokes the measurement server with

pointers to the correct data area when a request for a

resource is made.

The standard Desperanto monitor also is used to gather

trace data. The measurement server placed between the

resource and the Desperanto monitor will set a specific bit

in the header of all messages requesting support for a re-

mote resource to indicate that trace data is to be collect-

ed. Request messages which are received with the trace bit

.-. * set will cause the standard Desperanto monitor at that site

S.. to save the system clock time. When the response message is

returned to the requester the trace data is appended to the

end of the response message by the standard monitor. Once

-'V '-,,, ' ' . ." '., -'-, ,'" - '- -'" " - " " ", : ..

. , .. , o. . ., , ~ o . , , o.-. oo 0. ., - - • -.

8O

the response message is returned to the original requester

the measurement data which has been appended to the end of

the message will be removed by the measurement server and

the appropriate measurement records updated.

5.3.3 Control

At each host the standard Desperanto monitor will main-

tain control over the measurements at that location. A re-
quest for measurement on a resource will be trapped by the

standard Desperanto monitor and the necessary measurement

servers invoked at the local host and at any remote hosts as
required. Access rights are checked for each request and

the entry for the resource in the Desperanto data base

changed to indicate that the resource is being measured.

Each standard Desperanto server maintains a list of all the

resources at that location that are currently being measured

and by whom the measurement request was made. When a re-

quest for the resource is made, the measurement server is

invoked along with the resource server. Associated with

this list will be information as to the location of measure-

ment data associated with this resource including data which

nas been moved to auxiliary storage.

'4

81

5.3.4 Analysis

Analysis of measurement data collected by the measure-

ment facility for systems in the NAHCS class does not differ

from analysis of data from other systems. This is a well

understood task and several good systems already exist that

can be used to support this measurement function. No furth-

er design has been done.

.1.-

1.

i"i

I -

82

5.4 MEASUREMENT PRIMITIVES

To aid the implementer of a measurement facility there

needs to be specific basic tools from which the measurement

facility can be built. These basic tools, measurement prim-

itives, should be part of the system just as system service

commands or hardware assists.

Kolanko [KOL77] in his research for the CNMS noted the

need for formal specification techniques for the measurement

and evaluation of computer networks. He identified a set of

hardware and software modules necessary for network measure-

ment (event detection, time measuring, counters, communica-

tion and control equipment, and other circuitry).

Recently Svoboda has also seen the need for measurement

primitives and for measurement to be part of the overall

system design [SVO81]. Her emphasis is on the use of a mon-

itoring capability to support the measurement of reliabili-

ty. A set of basic monitoring activities (event detection,

event counting, direct timing, and sampling) were proposed

as necessary for the task. To support these activities a

basic set of resources (clocks, counters, accumulators, and

mechanisms for event detection and signaling) are necessary.

A method for providing this basic support was illustrated

for a portion of a generic system.

83

Measurement primitives are the basic measurement

resources that the individual programming the facility has

available. Without defined primitives the programmer must

construct the programs using the services provided by the

host system and the programming language(s) chosen for im-

plementation. If the programmer can abstract the task and

use previously defined primitives then he/she can more easi-

ly implement the facility without worrying about, or even

being aware of, the low level details of the program.

The primitives for the measurement facility consist of

abstract data objects with operations defined on them. For-

mal work in defining abstract data types has been done by

several researchers for languages such as CLU [LIS77] and

Alphard [WUL76]. Ghezzi and Jazayeri [GHE82] discuss

features of languages that support programming in the large.

One feature that they identify as being desirable is infor-

mation hiding - distinguishing between what a module exports

for use by other modules and the internal details of how a

module does the task.

For Desperanto the measurement requirements were

.1 analyzed and the measurement primitives needed were identi-

fied. Both the end-user measurement server and the PITL

measurement server are specified in Appendix B using these

S primitives. At the level of abstract data objects this is a

complete set of primitives.

-.

84

The measurement primitives needed for the Desperanto

system are listed in Figure 5.7. Each abstract data

object(CLOCK, INTERVALTIMER, ACCUMULATOR) can have one or

more occurrences in the measurement server. Each occurrence

is referenced by a unique identifier. For each data object

a set of valid operations are defined. Further definition

is provided in Appendix A.

The objectives and implementations of the measurement

facilities differ for the two referenced studies above from

the Desperanto system. Yet, the primitives identified are

comparable to those previously given in the literature.

Time measurements and counting are common. Event detection

is provided by the Desperanto monitor as is the case for

many other systems.

-, .

*" °

0t

85

CLOCK
"-.

CREATE CLOCK(c) -create clock c
- READ CLOCK(c) -read clock c, return timeREMOVE CLOCK(c) -destroy clock c

INTERVALTIMER

CREATE IT(int) -create interval timer intSTART IT(int) -start interval timer int
READIT(int,val) -read interval timer int,

return val
REMOVEIT(int) -destroy interval timer int

ACCUMULATOR

CREATE ACC(acc) -create accumulator acc
RESETACC(acc) -reset accumulator acc
READ ACC(acc,x:y) -read accumulator acc,

return current value of
X:Y(y=SUM, CNT,AVE,MIN, MAX, RGE)ADDACC(acc,z) -add z to accumulator accREMOVEACC(acc) -destroy accumulator acc

Figure 5.7 Measurement Primitives

,.4

0,'k 2 , _ . ..--. --. . - ---.-- ,. -. . . - - --

S - - * . _. , - , d" " "' "." ' ' "• " - ' - * _

D-fli42 41B PERFORMANCE MEASUREMENT
IN A DISTRIBUTED

PROCESSING 212
ENVIRONENT(U) AIR FORCE INST OF TECH WRIGHT-PRTTERSON
AFB OH W E AVEN 1984 AFIT/CI/NR-84-iD

UNCLRSSIFIED F/G 2/1 NLEEEEEEEEEEEEE

Eut

IIIII 1.8

MICROCOPY RESOLUTION TEST CHART

NATIONAL SjU U o STAkOAMOS - 19 -- A

86

5.5 SUMMARY

This chapter has described in detail the design for a

specific example of a system in the NAHCS class of distri-

buted environments. The design utilized the methodology ap-

proach presented in Chapter 4 along with the general design

for systems in the NAHCS class from Chapter 4. A major con-

tent of the chapter was the identification of measurement

primitives which can be used to easily construct measurement

facilities as illustrated in Appendix B. The primitives can

be programmed by the Desperanto implementers on those sys-

tems which are supporting the measurements. Once defined

they can be used to implement the measurement facility per

the design described earlier.

Appendix A provides further details on the measurement

primitives. Appendix B gives detailed specifications for the

control function and the measurement servers for the
4.

Desperanto measurement facility. These can be used during

the implementation of measurement facilities.

V
4,.'

iiI

"'t

"'.",". ",' ,".",'"."" .'i' '€"".' '."".i.'2'2 .'.o"2',''2"W2 2/;" g,¢.'2 k""-' €..,..'...:.r."-.'..,-.:".t.:.-'..'..', ,";.

• , + w ~ ~ ~ '+ -v ,. ... • ' -. . , ., + + , ., ,. . - - . "-j *...- +- '.

1*

CHAPTER 6

CONCLUSIONS AND FURTHER WORK

6.1 INTRODUCTION

This dissertation documents the results of research

into the design of measurement facilities for a specific

class of distributed computing systems. The class of sys-

tems is an important class that is attractive to many users

but has limited popularity because of the difficulty in

designing and implementing the software needed to interface

the heterogeneous systems. The Desperanto distributed

software support system is designed to remove these diffi-

culties. The users of the software system will require

tools to assist them in determining the performance of these

systems. A measurement facility designed specifically for

these systems will provide the system users with the ability

to better manage the use of the system.

IE;:!87

I
4

88

The research for this dissertation concentrated on de-

fining the class of distributed systems and on identifying

the measurement requirements for the measurement facility

for the class. The facility design for systems in this class

and the specific design for Desperanto was provided. This

chapter highlights the contributions of the research and

identifies further work.

-ft.

4.l

r.L

89

6.2 RESEARCH CONTRIBUTIONS

NAHCS distributed systems includes those systems which

are formed by connecting together existing computer sites by

means of a communication subnetwork. The individual sites

consist of heterogeneous architectures and are under
managerial control of several organizations.

This is the first detailed investigation of measurement

support for systems in this class. Previous researchers

have addressed the measurement problem for systems with dif-

ferent characteristics and thus measurement requirements.

The primary contributions are summarized below:

a. The dissertation provides the first description of

the NAHCS class of distributed systems in terms of the

characteristics which distinguish them from other sys-

tems. These distinguishing characteristics impose fun-

damental differences between systems in the class and

those not in the class that are important from a meas-

urement standpoint. A significant finding was that the

granularity of the measurement is affected by system

constraints, not by the measurement facility.

b. The users of the NAHCS measurement facilities were

identified and their measurement requirements esta-

blished. These users, the PITLs and end-users, differ

0in their measurement requirements both with respect to

.4a
,* 4 . , . . - ' . • " • '

'
" " "-, "'q , "" " " "- "

.'4 .,..-....'.". . . '.>. ,. ,. ,. ,..% ,,." .",. n,,, " ",., ' ' ,,,, , , ,., '. ,f k , "

A %i

90

each other and to measurement users outside the distri-

buted computing system environment. The PITL was iden-

tified for the first time as a measurement user.

c. The design of measurement facilities for this class

has been completed. After investigating all that is

required by the users of the facility and considering

the constraints, the resulting measurement requirements

were simple and the resulting design was straight for-

ward. This in contrast to what is normally expected of

distributed systems and to what was expected when we

began the research.

d. Measurement primitives were identified which are

sufficient to implement the facility. These primitives

are used to specify the measurement facility design for

NAHCS distributed software support system.

tte
,

.4I.!
- , , . ., ' . / € . , .. €'........ . v v
0

: ¢:

91

e. The research contributes to the level of understand-

ing with respect to the approach involved in designing

measurement facilities for distributed systems. The

measurement facility model presented in Chapter 4 pro-

vides a framework which can be used by designers of all

measurement facilities, distributed or non-distributed.

This simplifies the efforts required in facility design

and can facilitate the sharing of knowledge about meas-

urement facilities which will lead to a greater under-

standing of the measurement problem.

I

J..

92

6.3 FURTHER WORK

This research has established the design for measure-

ment facilities in the NAHCS class of distributed systems.

. During the development of the design a greater understanding

of the characteristics of distributed systems was gained.

Further work is needed to investigate issues relative

to the measurement facility. In particular, once the meas-

urement facility is implemented then its performance can be

evaluated using the tools available to the distributed sys-

tem programmer. Additionally, the interface with, or in

some cases support of, the accounting function for the dis-

tributed software system needs to be researched.

'II

%'..

70,

APPENDIX A

MEASUREMENT PRIMITIVES

This appendix provides a detailed description of the

measurement primitives introduced in Chapter 5. The defini-

tion of a "primitive" and the use of them was described

there and will not be repeated here. Appendix B illustrates

the use of these primitives in the specification of measure-

ment servers.

The following three sections give an overview of each

primitive and in some cases example Pascal code to show a

possible implementation of the primitive and to illustrate

its structure. In an actual implementation the details will

be hidden from the user and are system dependent. The data

structures used are simple ones. More complex structures

such as arrays, linked lists, and pointer vectors could be

used if desired by a particular distributed system analyst.

9

'p 93

nK7 - - - W ,F7 7 .qY -is - w 'w u r 7' 7. "77 -- -7

94

A-i. CLOCK

The CLOCK primitive should be provided to all measure-

ment facility designers and implementors. Once created the

* instance of CLOCK can be used in other primitives or to ob-

tain the current clock value for controlling measurement

events. The CLOCK primitive converts the value and format

of the system clock into a standard format for use in the

measurement facility. The data structure for storing the

*value of the clock varies from system to system. The CLOCK

primitive should remove differences in the interpretation of

clock times due to specific implementations. For instance,

the system clock can be defined to be the actual "wall

clock" time, or the elapsed time since the system was last

started, or the elapsed time since the clock was last read

*i by that process.

On the DEC VAX the current value for the clock can be

obtained by invoking the system service SYS$NUMTIM. This

service returns the time in seven 16 bit words. Three of

the words are used to keep the year, month, and day. The

other four words contain the time in the format

HOURS:MINUTES:SECONDS:HUNDREDTH OF A SECOND. The last four

words can easily be converted to a single number containing

the seconds (to one hundredth of a second) since midnight of

r that day.

VC -6Z 1.V. . .

95

The operations defined on the CLOCK primitive are as

follows:

1. CREATECLOCK(c) - establish the data structure for

the clock c. Data structure can be a single integer

variable containing the time in hundredth of a second.

2. READCLOCK(c) - obtain the current value of the sys-

tem clock, convert it into a standard form, and store

it in the requisite data structure.

3. REMOVECLOCK(c) - destroy the data structure for

clock c defined by the CREATE CLOCK operation.

.4
. " " " '4. . . . : , : . . . : i ;: ;.. :

L... -. ,:,,,,. . -, -,. , .. ,- ,* , . ~ ~ ~ .-..- ,*-:,.*. . -... U . -.....

96

A-2. INTERVALTIMER

The primitive INTERVALTIMER uses the CLOCK primitive

to provide the capability of obtaining elapsed time values.

This primitive should be used for cetermining end-to-end

response times, checking for end of measurement interval, or

for total measurement session time. A particular instance

of the INTERVALTIMER can be reset without affect I any

other instances of it.

The operations defined on the INTERVALTIMER (IT) are

as follows:

1. CREATEIT(int) - create a data structure with the

name 'int'. If a clock does not exist one must be

created. The structure can be a single integer vari-

able.

2. STARTIT(int) - start the interval timer by storing

the current value of the system clock obtained using

READCLOCK in int.

43. READIT(int,val) - obtain the value for the interval

int. The steps to take are as follows:

- invoke READ CLOCK

- compare value stored in the interval timer with

the clock value to see if midnight has passed
~4

4 ; ' '.;2'. -2. 2g24 :" ." '. -. .;', -V 2"- ' ". ... ,.........;,, .: ,. . _ ,-j"v,... ;., -

"S.-. . .

--t' %97

I:.:

- calculate the time interval considering if mid-

night was passed.

- store the current time in int

- return the value for the interval to the user

A sample implementation for the READ IT(int,val) is:

READ IT (INT,VAL);
(* Read clock C and calculate the interval since *)

- -. (* the last time saved in OLD TIME
(* Assume that the interval is always < 24 hours *)
(* MIDNIGHT contains the equivalent of 24 hours *)
BEGIN

OLD TIME := INT;
READ CLOCK(C);
IF C-> OLD TIME THEN
VAL : C-- OLDTIME

ELSE
VAL MIDNIGHT -OLDTIME + C;

INT := C
END

4. REMOVEIT(int) - delete the references to it from

the data structure. Invoke REMOVE-CLOCK if the clock

was dedicated to this primitive.

-%'.-

• . . " - - " ' "" " - " " , . o" -5'- L ' ' . " " - " ,

98

A-3. ACCUMULATOR

Many of the measurement parameters require maintaining

counts of events or accumulating the sum of values and then

determining the absolute value plus average, minimum, and

maximum values for the parameters. The ACCUMULATOR primi-

tive should provide the ability to obtain these parameters

with little more effort than required for a normal assign-

ment operation. For a defined instance of the data object

the ADD operation causes the appropriate data within the

data object to be changed. With the READ operation the

current value for count(CNT), average(AVE), minimum(MIN),

maximum(MAX), sum(SUM), and range(RGE) can be obtained. The

RESET operation will restart the accumulation of the data.

The data structure for the ACCUMULATOR (ACC) could be a

RECORD defined as:

ACCUM = RECORD

COUNT, (* count of entries
TOTAL, sum of entries
MINIMUM, (*, minimum entry value
MAXIMUM: INTEGER (* maximum entry value

END;

The operations defined for this primitive are as fol-

lows:

1. CREATEACC(acc) - create the data structure with the

name 'acc'. Initialize all elements in the structure.

2. RESETACC(acc) - reset all elements in acc to their

" -....--

99

initial values.

3. ADDACC(acc,val) - update all elements in acc using

the value val. The ADD.ACC operation can be implement-

ed as follows:

ADD ACC(ACC, ENTRY)
assume that ACC is of type ACCUM and *)

(* ENTRY is the value to be accumulated *)
BEGIN
WITH ACC DO

COUNT := COUNT + 1;
TOTAL = TOTAL + ENTRY;
IF"ENTRY < MINIMUM THEN
MINIMUM := ENTRY;

IF ENTRY > MAXIMUM THEN
MAXIMUM := ENTRY

- .- .END

END

*5.; . 4. READACC(accfld:val) - access acc and return the

value(s) stored in field(s) val. The second parameter

can be implemented using vectors.

5. REMOVEACC(acc) - delete instance of acc.

%%-..

%*
.'
, 1:::

., ,,,

.I ~ ~ ~ ~ v !I. ,77. e, 7 .> _ -.

APPENDIX B

•F.-. DESPERANTO MEASUREMENT FACILITY

This appendix contains specifications for the Desperan-

to Measurement facility. The specification describes the

operation of the control function located in the Desperanto

monitor and the design of the measurement servers for the

PITLs and the end-users. The description of the facility in

- Chapter 5 is assumed as a basis for the appendix. Also it

is assumed that Desperanto has provided user interface

servers, that the primitives introduced in Chapter 5 and Ap-

pendix A are available, and that the analysis is accom-

plished using existing analysis packages.-4

The organization of the appendix is as follows:

Control (section B-i)

Measurement Servers (section B-2)

100

.,4,.

.'-" - -' .- ' "- - "v-" """ "- ;'. ''' -,'""0' . ". - ,- ."?', '"

S~~ .0 S. S

101

B-1 CONTROL

The control function is included in the Desperanto mon-

itor. At the time that a measurement user requests a meas-

urement with either the START USERMEAS or STARTTOOL MEAS

commands the request is trapped and the appropriate module

is invoked. The same action takes place when any of the

other measurement commands are issued. For all commands,
S .

.

the measurement user, PITL or end-user, is prompted using

the menu displays for parameters which are missing or are

incorrect.

The control module will perform the following functions

relative to the measurement servers.

1. Check the request for correct entries and request any ad-

ditional entries or modifications necessary.

2. Invoke the appropriate measurement servers and set the

parameters in the Desperanto system to handle the measure-

ments.

%-

a. Entries in the Desperanto data base are changed to

indicate that resource is being measured and required

Oo storage is allocated.

b. For end-user measurements the measurement server is

invoked and it's address is the pseudo address for the

user's terminal server. %I
:'. - ' .' .- . " " ; -; . ..'';v. " 'v'.-'.,'," -v~>....-." -- -. .9. v v ."v'". ..'


~~~~-- -7~f --. 7 - -

102

c. For the PITL measurements the measurement server is

invoked and it's address is the pseudo address for the

resource server.

4. During measurement activity the measurement servers

detect the events of interest, collect the data, and write

the data to storage. The control function can be used to

assist the servers in controlling the length of measurement

sessions and in writing data records to storage.

5. At the completion of the measurement session:

a. A message is sent to the active measurement server

to cause a final measurement record to be written..

b. The Desperanto data base is modified as required.

c. Measurement servers are deactivated.

0-

a-

J°

I

pt

DI



-'._"

103

B-2 DESPERANTO MEASUREMENT SERVER

At the time that a request for measurement on a

resource is made a measurement server is established as dis-

cussed in Chapter 5 and B-1. These servers will exist,

although not always active, until the measurement ter-

minates. The address for the resource or the end-user s

process is the address of the measurement server.

The specification for the design of the servers is di-

vided into three parts - start of measurement session, the

session itself , and end of session. Features unique to

just one server, PITL or end-user, are noted.

1. Initialization of measurement session

-commands used - STARTPITLMEAS or STARTUSERMEAS

-verify that resource xyz is a valid resource for

measurement (PITL only)

- establish start conditions (STARTOPT)

If option = next then
Initiate measurement immediately

If option = count then
CREATE ACC(start cnt)
If val -from READ-ACC(start cnt,val:CNT) < x
invoke ADD ACCTstart cntT
for each request received

Start measurement



104

If option = time then
CREATE CLOCK(start c'k)
While start clk <y wait
Start measurement

- Create the necessary data structures

CREATECLOCK(xyz_resp) (*response time *)

CREATE ACC(xyzusage) (*request count *)

CREATEACC(xyzwait) (*wait time - PITL*)

CREATEACC(xyz_comm) (*communication time *)
(*- PITL only

CREATEACC(userresp) (*user response time *)

- Establish end of measurement option

If option = count then
CREATEACC(stop cnt)
If val from READ ACC(stop cnt,val:CNT) < x
then ADDACC(stop_cnt,iT
else stop measurement

If option = clock then
Do same as for STARTOPT

If option = halt then

Stop immediately

-Establish mechanism for measurement record preparation

If option = count then
CREATEACC(reccnt)

If option = time then
CREATEACC( rec-clk)

N



-7 TZW 7. 70.. .

105

2. During a measurement session each activity relative to
the resource requires measurement server response.

- use primitives to update all data structures initial-
- ized during start of session (xyzusage,xyz_resp, etc.)

-If trace option invoked (PITL only) then

If action is request for service from another
resource then

set trace bit in header of request message

If action is response to request then
process all data structures using the primitives.

-Check to determine if data record should be written

If INTERVAL option = count and reccnt - x > 0
then
Write record

If INTERVAL option - time and recclk - y > 0 then
Write record

r. 3. At end of measurement session

Write final measurement record

- Invoke analysis service if ANLYOPT = end

Delete all measurement records if ANLYOPT = delete

?.

i

.,,4. . , .-. , ._.-. .. . . .- .-. ,-.-.. -.....-..... , , ....- -v ,. ,. -, ,. -,

l!' i, !l,,'% 
.

, ,, , ... . , , .. ,- - - - , • • . -* ... ,a..** .. -a> _,



F.- -- -4*, ~ ** ~ U . ~7-

I.I
2

BIBLIOGRAPHY

CABR77] Abrams, M.D., Cotton, I.W., Watkins, S.W.,
Rosenthal, R., and Rippy, D.E., "The NBS Network
Measurement System," IEEE Transactions on Comput-
ers, Vol COM-25, No.-0, October 1977, pp.1189-
i--8.

[ABR79J Abrams, Marshall D., and Neiman, Dorothy C., "The
NBS Network Measurement Instrument," Proceedings
of the 15th CPEUG Meeting," San Diego, California,
October 15-18, 1979, pp.201-211. (Also published
as NBS Pub 500-52, October 1979)

lAME82] Amer, Paul D., "A Measurement Center for the NBS
Local Area Computer Network", IEEE Transactions on
C e, Vol. C-31, No. 8, August 1982, pp.

EBAR68J Barnes, G.H., Brown, R.M., Kato, D.J., Slotnick,
D.L., and Stokes, R.A., "The ILLIAC IV Computer",
IEEE Transactions on Computers, Vol. C-17, August
1968, 746-757.

[BLA80] Blake, Russ, "XRAY: Instrumentation for Multiple
Computers," Proceedings of Performance '80. Toron-
to, Ontario, Canada, May 28-30, 1980, pp. 11-25.

[BOO81 Booth, Grayce, M. The Distributed System Environ-
ment: Some Practical Approaches, McGraw-Hill, New
York, 1,I-.

[BOR79] Borovits, Israel and Neumann, Serv, Computer Sys-
tems Performance Evaluation, Lexington Books, Mas-
sachusetts, 1979.

106

# !4 . t - - | - . 4 4 • .



107

[BR076) Browne, J.C., "A Critical Overview of Computer Er-
formance Evaluation," 2nd International Conference
on Software Engineering, October 13-15, 1976, p.
138-145.

[BUC77] Buck, David L., and Hrynyk, David M., "Software
Architecture for a Computer Network Monitoring
System," International Conference on Performance
of Computer Installations, Ferrari, D., editor,
17178, pp. 269-287.

[BUZ76] Buzen, J. P., "Fundamental Laws of Computer System
Performance," Proceedings of the International
Symposium on Computer Performance Modeling, Meas-
urement, and Evaluation, Chen, Peter P. S., and
Franklin, Ma-rk, editors, Boston, Massachusetts,
March 29-31, 1976, pp. 200-210.

.CHE79] Cheriton, D. R., Malcolm, M. A., Melan, L. S., and
*Sager, G. R., "Thoth, A Portable Real-Time Operat-

ing System," Communications of ACM, Vol. 22, No.
2, February 1979, pp. 105-114.

..

[COL71J Cole, Gerald D., "Computer Network Measurement

Techniques and Experiments," UCLA- ENG-7165, Oc-
tober 1971.

[COT77] Cotton, Ira. W., "Local Area Networking Report
of a Workshop Held at the National Bureau of Stan-dards," Gaithersburg, Maryland, August 22-23,1977. (NBS Special Publication 500-31)

[DER76J DeRemer, Frank, and Kron, Hans. H., "Programming-
in-the-Large Versus Programming-in-the-Small,"
IEEE Transactions on Software Engineering, Vol.
SE-, No. 2, June r76, pp. 80-86.

[DESB0 desJardins, Richard, and White, George W.,
"ISO/ANSI Reference Model of Open Systems Archi-
tecture," Proceedings of Trends and Applica-
tions:1980 National Bureau of Standairds, May 29,
§-W, pp. 47-53.



._ _ - . .. . . j . -4 ';. - -. -. " . - -- . - '• - ,

%L

108

[DRU73] Drummond, M. E. Jr., Evaluation and Measurement
Techniques for Digtal Computer Systems,
Prentice-Hall, New Jersey, 1973.

[ECK78J Eckhouse, Richard H. Jr. and Stankovic, John A.,
"Issues in Distributing Processing - An Overview
of Two Workshops," IEEE Computer, January 1978,
pp. 222-26.

CENS78] Enslow, Phillip H. Jr., "What is a 'Distributed'
Data Processing System?," Computer, January 1978,
pp. 13-21.

[FER78-" Ferrari, Domenico, Computer Systems Performance
Evaluation, Prentice-Hall, New Jersey, 1978.

[FOR78] Forsdick, Harry C., Schantz, Richard E. and Tho-
mas, Robert H., "Operating Systems for Computer
Networks," IEEE Computer, January 1978, pp. 48-57.

[GEH82J Gehringer, Edward F., Jones, Anita K., and Segall,
Zary Z., "The Cm* Testbed," IEEE Computer, Vol.
15, No. 10, October 1982, pp. 4

£GHE82J Ghezzi, Carlo, and Jazayeri, Mehdi, Programming
Language Concepts, John Wiley, New York 1982.

CHRY78] Hrynyk, David M., "A Computer Network Measurement
Definition and Control Language and Compiler,"
CCNG Report T-25, University of Waterloo, January

1978.

[IBM77] IBM OS/VS2 MVS Resource Management Facility (RMF)
Version 2 General Information Manual, GC28-0921-0.

[JON80] Jones, Anita K. and Schwarz, Peter, "Experience
Using Multiprocessor Systems - A Status Report,"
Computinq Surveys, Vol. 12, No. 2, June 1980, pp.
121-165.* 2I73

. . . . . . . .. . ..4'. .; . . , .. . . .. .. .--- .... 4 .

- . .. ,- .- o,. . • . . , " _. ,. •



109

[KAT78] Katzman, James A., "A Fault Tolerant Computing
System," IEEE Hawaii International Conference of
System Sciences, January 1978.

[KIM78] Kimbleton, Stephen R., Wood, Helen M., and
Fitzgerald, M. L., "Network Operating Systems - An
Implementation Approach," AFIPS National Computer
Conference Proceedings, 47 June 1978, pp. 773-
782.

[KOL773 Kolanko, Richard, "A Structured Approach to Per-
formance Measurement of Computer Networks," CCNG
Report T-62, University of Waterloo, June 1977.

CLAN82) Lantz, Keith A., Gradischnig, Klaus D., Feldman,
Jerome A., and Rashid, Richard F., "Rochester's
Intelligent Gateway," IEEE Computer, Vol. 15, No.
10, October 1982, pp. 3-8.

"LAZ81] Lazowska, Edward D., Levy, Henry M., Almes, Guy
T., Fischer, Michael J., Fowler, Robert J., and
Vestal, Stephan C., "The Architecture of the Eden

Operating Systems Principles, Asilomar, December
1981f pp. 148-159.

[LIS77J Liskov, B., Snyder, A., Atkinson, R., and Schaf-
fert, C., "Abstraction Mechanism in CLU," CACM,
Vol. 20, No. 8, August 1977, pp. 564-576.

[MCD77] McDaniel, Gene, "METRIC: A Kernel Instrumentation
System for Distributed Environments," Proceedings
of the Sixth ACM Symposium on Operating System
Principles, November 1977, pp. 93-99.

EMAM81] Mamrak, S. A., "Installing Existing Tools in a
Distributed Processing Environment," Proceedings
of the First Conference on Foundations of Software
Technology and Theoretical Computer Science, Ban-
galore, India, December 1981 pp. 49-56.

'4 . . '-% . - - -. 
°  

- ". .' - ". . .'.' ". , " " " - •, ' " , , " ' '.'

*-,,| ., '.|. ... .. -'. .--.. " d •. . .



I..

110

[MAM82a] Mamrak, Sandra A., Ayen, W. E., Gherfal, F., and
Leinbaugh, D., "Performance Measurement and Excep-
tion Handling in Desperanto's Distributed Environ-
ment," Proceedings 3rd International Conference on
Distributed Computer Systems, Miami, Florida, Oc-
tober 1982, pp. 840-846.

[MAM82b] Mamrak, S. A., Maurath,P., Gomez, J., Janaradan,
S., and Nicholas, C., "Guest Layering Distributed
Processing Support on Local Operating Systems,"

Proceedings 3rd International Conference on Dis-
tribute- Computer Systems, Miami, Florida, October
1982, pp. 854-859.

[MAM82c] Mamrak, S. A., Kuo, J., and Soni, D., "Supporting
Existing Tools in Distributed Processing Systems:
The Conversion Problem," Proceedings of the 3rd
International Conference on Distributed Computer
Systems, Miami, October 1982, pp. 847-853.

[MAM83] Mamrak, Sandra A., Leinbaugh, Dennis, and Berk,
Toby S., "A Progress Report on the Desperanto
Research Project Software Support for Distributing
Processing," ACM Operating Systems Review, Vol.
17, No. 1, January 1983, pp. 17-29.

[MOR75] Morgan, David E., Banks, Walter, Goodspeed, Dale
P., and Kolanko, Richard, "A Computer Network Mon-
itoring System," IEEE Transactions on Software En-
gineering, Vol.SE-1, No. 3, September 1975, pp.
299-311.

[NUT75] Nutt, Gary J., "Tutorial: Computer System Moni-
tors," IEEE Computer, November 1975, pp. 51-61.

[OUS80] Ousterhout, Jack K., Scelza, Donald A., and Sin-
dhu, Pradeep S., "Medusa: An Experiment in Distri-
buted Operating System Structure," Communications
of the ACM, Vol. 23, No. 2, February 1980, pp.
WT-057T

1.-5

......................................... . . . . . . .



[POP81] Popek, G., Walker, B., Chow, J. Edwards, P.,
Kline, C., Rudisin, G., and Thiel, G., "LOCUS: A
Network Transparent, High Reliability Distributed
System," Proceedings Eighth Symposium on Operatinc
Systems Principles, Asilomar, December 1981, pp.
169-177.

[RAS78] Raskin, Levy, "Performance Evaluation of Multiple
Processor Systems, PhD Thesis, Carnegie-Mellon U.,
August 1978.

[ROS78] Rose, C. A., "A Measurement Procedure for Queueing
Network Models of Computer Systems," ACM Computing
Surveys, Vol. 10, No. 3, September 1978, pp. 263--. '-'.-280.

"SCH80] Schantz, R., and Swernofsky, S., "The TENEX/TOPS-
20 NSW Foreman Program Maintenance Manual: Appen-
dix A Performance Measurement Package," BBN Report
No. 4093, May 1980.

[SHO0] Shoch, J. F. and Hupp, J. A., "Measured Perfor-
mance of an Ethernet Local Network," ACM Communi-
cations, Vol. 23, No. 12, December 1980, pp.711.

[SV076J Svobodova, Liba, Computer Performance Measurement
and Evaluation Methods: Analysis and Applications,

. Elsevier, New York, 1976.

- [SVO0O Svobodova, Liba, "Performance Problems in Distri-
buted Systems," INFOR, Vol. 18, No. 1, February
1980.

[SVO8I] Svobodova, Liba, "Performance Monitoring in Com-
puter Systems - A Structured Approach," ACM
Operating Systems Review, Vol. 15, No. 3, July
1981 pp. 39-50.

[SWA77) Swan, R.j., Bechtholsherim, A., Lai, K.W., and
Ousterhout, J.K., "The Implementation of the Cm*
Multiprocessor", Proceedings AFIPS 1977 National
Computer Conference, Vol. 46, AFIPS Press,
Montvale, N.J., 977, 645-655.

* - * .



-°W- W

112

[TAN81] Tanenbaum, Andrew S., Computer Networks,
Prentice-Hall, New Jersey, 1981.

[THO73] Thomas, Robert H., "A Resource Sharing Executive
for the ARPANET," AFIPS National Computer Confer-
ence Proceedings 42, 1973, pp. 155-163.

.TR1783 Tripathi, Anand P., Upchurch, Edwin T., and
Browne, James C., "An Overview of Research Direc-
tions in Distributing Processing," IEEE COMPCON
Fall 78.

[UNI78] "UNIVAC Software Instrumentation Package," Univac
Corporation, March 1978.

IWAL80] Wallack, Barry M. and Gero, George H., "General-
ized Monitoring Facility Users Manual," DOD Com-
mand and Control Technical Center Manual CSM UM
246-80, July 1980.

[WAT72] Watson, W.J., "The TI ASC - A Highly Modular and
Flexible Supercomputer Architecture", Proceedings
AFIPS 1972 Fall Joint Computer Conference, Vol.
41, AFIPS Press, Montvale, N.J., 1972, 221-228.

[WAT80] Watson, Richard W. and Fletcher, John G., "An Ar-
chitecture for Support of Network Operating SystemServices," Computer Networks, Vol. 4, No. 1,
February 1980, pp. 33-49.

[WEI80] Weitzmann, Cay, Distributed Micro/MinicomputerSystems: Structure, Implementation, and Applica-
tions, Prentice-Hall, New Jersey, 1980.

*._

% -,, , . . . . % . , . - * ' , -- . . . . . . . . . . . . . . -% , - .

' I - • : . -. . ., -: . ' .. ' .. o . -' ' . . . .' .. ' . .. ' ' ' ' ' ' '- . °



113

[WUL72] Wulf, W.A., and Bell, C.G., "C.mmp - A Multimini
Processor", Proceedings AFIPS 1972 Fall joint Com-
puter Conference, Vol. 41, AFIPS Press, Montvale,
N.J., 1972, 765-777.

[WUL77] Wulf, W. A., Linden, R., and Shaw, M., "An Intro-
duction to the Construction and Verification of
Alphard Programs," Communications of ACM, Vol. 20,
No. 8, August 1977, pp. 253-264.

[WUL81) Wulf, William A., Levin, Roy, and Harbison, Samuel
P., HYDRA/C.mmp: An Experimental Computer System,
McGraw-Hi l, New York, 1981.

[ZIM80] Zimmerman, H., "OSI Reference Model - The ISO
Model of Architecture for Open Systems Intercon-
nection," IEEE Transactions on Communications,
Vol. COM-28, No. 4, April 1980,-pp. 425-432.

'-

N



.
.

T
. . . . . . . . . . . . . . . . . .. . . . .

'- t;7

''" 'ji 
t0 ~ ~~ A lA ~ .I.

TN.'

I -% ,. -

7. e.,

-- 1

rLe.' A


